Metabolomics Study on Pathogenic and Non-pathogenic E. coli with Closely Related Genomes with a Focus on Yersiniabactin and Its Known and Novel Derivatives
Abstract
:1. Introduction
2. Results
2.1. Metabolomics Study of the E. coli Strains EcN, 83972, and CFT073
2.2. Comparison of the Occurrence of Ybt and Several Derivatives in the Metabolome of Different E. coli Strains
2.3. Identification of Escherichelin and Ulbactin B
2.4. Novel Derivatives of Ybt.
2.4.1. Characterization of the A Isomers of the Novel Derivatives of Ybt Based on MS Data
2.4.2. Characterization of the B Isomers of the Novel Derivatives of Ybt Based on MS Data
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Metabolomics Workflow
4.2.1. Cultivation of the E. coli Strains EcN, 83972, and CFT073
4.2.2. Sample Preparation, Chromatographic Conditions, and Data Acquisition by LC-HRMS Analysis
4.2.3. Data Processing and Statistical Analysis
4.2.4. Identification and Characterization of Metabolites by LC-MS/HRMS
4.3. Comparison of the Occurrence of Ybt and Several Derivatives in the Metabolome of Different E. coli Strains
Sample Preparation, Chromatographic Conditions, and Data Acquisition by LC-MS/MS Analysis
4.4. Isolation of Ulbactin B from Bacterial Culture Supernatant of EcN
4.4.1. Cultivation of EcN for Isolation of Ulbactin B from the Culture Supernatant
4.4.2. Pre-concentration of 5 L Culture Supernatant
4.4.3. Fractionated Solid Phase Extraction (SPE) of the Eluate of the Culture Supernatant
4.4.4. Preparative HPLC-UV of the Fraction of Ulbactin B and Acquisition of NMR Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Russo, T.A.; Johnson, J.R. Proposal for a New Inclusive Designation for Extraintestinal Pathogenic Isolates of Escherichia coli: ExPEC. J. Infect. Dis. 2000, 181, 1753–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, P.; Hancock, V.; Schembri, M.A. Mellowing Out: Adaptation to Commensalism by Escherichia coli Asymptomatic Bacteriuria Strain 83972. Infect. Immun. 2007, 75, 3688–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenlehner, F.M.E.; Wagenlehner, C.; Savov, O.; Guaico, L.; Schito, G.; Naber, K.G. Klinik und Epidemiologie der unkomplizierten Zystitis bei Frauen Deutsche Ergebnisse der ARESC-studie. Urologe A 2010, 49, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ulett, G.C.; Totsika, M.; Schaale, K.; Carey, A.J.; Sweet, M.J.; Schembri, M.A. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 2013, 16, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, U.; Hanson, L.A.; Jodal, U.; Lidin-Janson, G.; Lincoln, K.; Olling, S. Asymptomatic Bacteriuria in Schoolgirls. II Differences in Escherichia Coli Causing Asymptomatic and Symptomatic Bacteriuria. Acta. Paediatr. 1975, 64, 432–436. [Google Scholar] [CrossRef]
- Andersson, P.; Engberg, I.; Lidin-Janson, G.; Lincoln, K.; Hull, R.; Hull, S.; Svanborg, C. Persistence of Escherichia coli Bacteriuria Is Not Determined by Bacterial Adherence. Infect. Immun. 1991, 59, 2915–2921. [Google Scholar] [CrossRef] [Green Version]
- Mobley, H.L.; Green, D.M.; Trifillis, A.L.; Johnson, D.E.; Chippendale, G.R.; Lockatell, C.V.; Jones, B.D.; Warren, J.W. Pyelonephritogenic Escherichia coli and Killing of Cultured Human Renal Proximal Tubular Epithelial Cells: Role of Hemolysin in Some Strains. Infect. Immun. 1990, 58, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- Vejborg, R.M.; Friis, C.; Hancock, V.; Schembri, M.A.; Klemm, P. A virulent parent with probiotic progeny: Comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol. Genet. Genomics 2010, 283, 469–484. [Google Scholar] [CrossRef]
- Sonnenborn, U. Escherichia coli strain Nissle 1917—from bench to bedside and back: History of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 2016, 363, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.E.; Heffernan, J.R.; Henderson, J.P. The iron hand of uropathogenic Escherichia coli: The role of transition metal control in virulence. Future Microbiol. 2018, 13, 745–756. [Google Scholar] [CrossRef]
- Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol. 2001, 291, 67–79. [Google Scholar] [CrossRef]
- Henderson, J.P.; Crowley, J.R.; Pinkner, J.S.; Walker, J.N.; Tsukayama, P.; Stamm, W.E.; Hooton, T.M.; Hultgren, S.J. Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli. PLoS Pathog. 2009, 5, e1000305. [Google Scholar] [CrossRef]
- Valdebenito, M.; Crumbliss, A.L.; Winkelmann, G.; Hantke, K. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int. J. Med. Microbiol. 2006, 296, 513–520. [Google Scholar] [CrossRef]
- Watts, R.E.; Totsika, M.; Challinor, V.L.; Mabbett, A.N.; Ulett, G.C.; Voss, J.J.D.; Schembri, M.A. Contribution of Siderophore Systems to Growth and Urinary Tract Colonization of Asymptomatic Bacteriuria Escherichia coli. Infect. Immun. 2012, 80, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Porcheron, G.; Habib, R.; Houle, S.; Caza, M.; Lépine, F.; Daigle, F.; Massé, E.; Dozois, C.M. The Small RNA RyhB Contributes to Siderophore Production and Virulence of Uropathogenic Escherichia coli. Infect. Immun. 2014, 82, 5056–5068. [Google Scholar] [CrossRef] [Green Version]
- Brzuszkiewicz, E.; Brüggemann, H.; Liesegang, H.; Emmert, M.; Ölschläger, T.; Nagy, G.; Albermann, K.; Wagner, C.; Buchrieser, C.; Emody, L.; et al. How to become a uropathogen: Comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl. Acad. Sci. USA 2006, 103, 12879–12884. [Google Scholar] [CrossRef] [Green Version]
- Haag, H.; Hantke, K.; Drechsel, H.; Stojiljkovic, I.; Jung, G.; Zähner, H. Purification of yersiniabactin: A siderophore and possible virulence factor of Yersinia enterocolitica. J. Gen. Microbiol. 1993, 139, 2159–2165. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, H.; Stephan, H.; Lotz, R.; Haag, H.; Zähner, H.; Hantke, K.; Jung, G. Structure Elucidation of Yersiniabactin, a Siderophore from Highly Virulent Yersinia Strains. Eur. J. Org. Chem. 1995, 1995, 1727–1733. [Google Scholar] [CrossRef]
- Bach, S.; De Almeida, A.; Carniel, E. The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol. Lett. 2000, 183, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, K.S.; Hung, C.S.; Crowley, J.R.; Stapleton, A.E.; Henderson, J.P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 2012, 8, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Koh, E.I.; Hung, C.S.; Parker, K.S.; Crowley, J.R.; Giblin, D.E.; Henderson, J.P. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 2015, 7, 1011–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, E.; Robinson, A.E.; Bandara, N.; Rogers, B.E.; Henderson, J.P. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 2017, 13, 1016–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.A.; Luo, L.; Hillson, N.; Keating, T.A.; Walsh, C.T. Yersiniabactin Synthetase: A Four-Protein Assembly Line Producing the Nonribosomal Peptide/Polyketide Hybrid Siderophore of Yersinia pestis. Chem. Biol. 2002, 9, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.D.; Rinehart, K.L.; Moore, M.L.; Cook, J.C. Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1981, 78, 4256–4260. [Google Scholar] [CrossRef] [Green Version]
- Gehring, A.M.; Mori, I.; Perry, R.D.; Walsh, C.T. The Nonribosomal Peptide Synthetase HMWP2 Forms a Thiazoline Ring during Biogenesis of Yersiniabactin, an Iron-Chelating Virulence Factor of Yersinia pestis. Biochemistry 1998, 37, 11637–11650. [Google Scholar] [CrossRef]
- Crosa, J.H.; Walsh, C.T. Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Mislin, G.L.; Burger, A.; Abdallah, M.A. Synthesis of new thiazole analogues of pyochelin, a siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. A new conversion of thiazolines into thiazoles. Tetrahedron 2004, 60, 12139–12145. [Google Scholar] [CrossRef]
- Mislin, G.L.; Hoegy, F.; Cobessi, D.; Poole, K.; Rognan, D.; Schalk, I.J. Binding Properties of Pyochelin and Structurally Related Molecules to FptA of Pseudomonas aeruginosa. J. Mol. Biol. 2006, 357, 1437–1448. [Google Scholar] [CrossRef]
- Ohlemacher, S.I.; Giblin, D.E.; D’Avignon, D.A.; Stapleton, A.E.; Trautner, B.W.; Henderson, J.P. Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J. Clin. Investig. 2017, 127, 4018–4030. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-N.; Lee, H.-J.; Hsieh, C.-T.; Peng, C.-C.; Yang, Y.-L. Chemistry and Biology of Salicyl-Capped Siderophores. Stud. Nat. Prod. Chem. 2018, 59, 431–490. [Google Scholar] [CrossRef]
- Kikuchi, K.; Chen, C.; Adachi, K.; Nishijima, M.; Araki, M.; Sano, H. Novel alkaloids, Ulbactins, Produced by Marine Bacteria. Jpn. Kokai Tokkyo Koho. Chem. Abstr. 1996, 129, 3913. [Google Scholar] [CrossRef]
- Grozdanov, L.; Raasch, C.; Schulze, J.; Sonnenborn, U.; Gottschalk, G.; Hacker, J.; Dobrindt, U. Analysis of the Genome Structure of the Nonpathogenic Probiotic Escherichia coli Strain Nissle 1917. J. Bacteriol. 2004, 186, 5432–5441. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.A.; Burland, V.; Plunkett, G.; Redford, P.; Roesch, P.; Rasko, D.; Buckles, E.L.; Liou, S.R.; Boutin, A.; Hackett, J.; et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 17020–17024. [Google Scholar] [CrossRef] [Green Version]
- Zdziarski, J.; Svanborg, C.; Wullt, B.; Hacker, J.; Dobrindt, U. Molecular Basis of Commensalism in the Urinary Tract: Low Virulence or Virulence Attenuation? Infect. Immun. 2008, 76, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Zdziarski, J.; Brzuszkiewicz, E.; Wullt, B.; Liesegang, H.; Biran, D.; Voigt, B.; Grönberg-Hernandez, J.; Ragnarsdottir, B.; Hecker, M.; Ron, E.Z.; et al. Host Imprints on Bacterial Genomes—Rapid, Divergent Evolution in Individual Patients. PLoS Pathog. 2010, 6, 95–96. [Google Scholar] [CrossRef] [Green Version]
- Dobrindt, U.; Wullt, B.; Svanborg, C. Asymtomatic Bacteriuria as a Model to Study the Coevolution of Hosts and Bacteria. Pathogens 2016, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Sonnenborn, U.; Schulze, J. The non-pathogenic Escherichia coli strain Nissle 1917—Features of a versatile probiotic. Microb. Ecol. Health. Dis. 2009, 21, 122–158. [Google Scholar] [CrossRef]
- Patzer, S.I.; Baquero, M.R.; Bravo, D.; Moreno, F.; Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IronN. Microbiology 2003, 149, 2557–2570. [Google Scholar] [CrossRef] [Green Version]
- Roos, V.; Schembri, M.A.; Ulett, G.C.; Klemm, P. Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae. Microbiology 2006, 152, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Klemm, P.; Schembri, M.A. Bacterial adhesins: Function and structure. Int. J. Med. Microbiol. 2000, 290, 27–35. [Google Scholar] [CrossRef]
- Wullt, B.; Bergsten, G.; Connell, H.; Röllano, P.; Gebretsadik, N.; Hull, R.; Svanborg, C. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Mol. Microbiol. 2000, 38, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Bergsten, G.; Wullt, B.; Svanborg, C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int. J. Med. Microbiol. 2005, 295, 487–502. [Google Scholar] [CrossRef]
- Klemm, P.; Roos, V.; Ulett, G.C.; Svanborg, C.; Schembri, M.A. Molecular Characterization of the Escherichia coli Asymptomatic Bacteriuria Strain 83972: The Taming of a Pathogen. Infect. Immun. 2006, 74, 781–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, V.; Vejborg, R.M.; Klemm, P. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: Comparison of transcriptomes, growth and biofilm formation. Mol. Genet. Genomics 2010, 284, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hooft, J.J.J.; Goldstone, R.J.; Harris, S.; Burgess, K.E.V.; Smith, D.G.E. Substantial Extracellular Metabolic Differences Found Between Phylogenetically Closely Related Probiotic and Pathogenic Strains of Escherichia coli. Front. Microbiol. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Gibson, F.; Magrath, D.I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochim. Biophys. Acta 1969, 192, 175–184. [Google Scholar] [CrossRef]
- Küpper, F.C.; Carrano, C.J.; Kuhn, J.-U.; Butler, A. Photoreactivity of Iron(III)-Aerobactin: Photoproduct Structure and Iron(III) Coordination. Inorg. Chem. 2006, 45, 6028–6033. [Google Scholar] [CrossRef]
- Liu, Z.; Reba, S.; Chen, W.; Porwal, S.K.; Boom, W.H.; Petersen, R.B.; Rojas, R.; Viswanathan, R.; Devireddy, L. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J. Exp. Med. 2014, 211, 1197–1213. [Google Scholar] [CrossRef] [Green Version]
- Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637. [Google Scholar] [CrossRef]
- Yan, L.; Nie, W.; Lv, H. Metabolic phenotyping of the Yersinia high-pathogenicity island that regulates central carbon metabolism. Analyst 2015, 140, 3356–3361. [Google Scholar] [CrossRef]
- Su, Q.; Guan, T.; He, Y.; Lv, H. Siderophore Biosynthesis Governs the Virulence of Uropathogenic Escherichia coli by Coordinately Modulating the Differential Metabolism. J. Proteome Res. 2016, 15, 1323–1332. [Google Scholar] [CrossRef]
- Chaturvedi, K.S.; Hung, C.S.; Giblin, D.E.; Urushidani, S.; Austin, A.M.; Dinauer, M.C.; Henderson, J.P. Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic. ACS Chem. Biol. 2014, 9, 551–561. [Google Scholar] [CrossRef]
- Koh, E.; Henderson, J.P. Microbial Copper-binding Siderophores at the Host-Pathogen Interface. J. Biol. Chem. 2015, 290, 18967–18974. [Google Scholar] [CrossRef] [Green Version]
- Brumbaugh, A.R.; Smith, S.N.; Subashchandrabose, S.; Himpsl, S.D.; Hazen, T.H.; Rasko, D.A.; Mobley, H.L. Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection. Infect. Immun. 2015, 83, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.C.; Brumbaugh, A.R.; Mobley, H.L.T. Redundancy and Specificity of Escherichia coli Iron Acquisition Systems during Urinary Tract Infection. Infect. Immun. 2011, 79, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Smati, M.; Magistro, G.; Adiba, S.; Wieser, A.; Picard, B.; Schubert, S.; Denamur, E. Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal pathogenic Escherichia coli. Int. J. Med. Microbiol. 2017, 307, 44–56. [Google Scholar] [CrossRef]
- Hancock, V.; Ferrières, L.; Klemm, P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 2008, 154, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Reisner, A.; Krogfelt, K.A.; Klein, B.M.; Zechner, E.L.; Molin, S. In Vitro Biofilm Formation of Commensal and Pathogenic Escherichia coli Strains: Impact of Environmental and Genetic Factors. J. Bacteriol. 2006, 188, 3572–3581. [Google Scholar] [CrossRef] [Green Version]
- Souto, A.; Montaos, M.A.; Rivas, A.J.; Balado, M.; Osorio, C.R.; Rodríguez, J.; Lemos, M.L.; Jiménez, C. Structure and Biosynthetic Assembly of Piscibactin, a Siderophore from Photobacterium damselae subsp. piscicida, Predicted from Genome Analysis. Eur. J. Org. Chem. 2012, 29, 5693–5700. [Google Scholar] [CrossRef]
- Weissberg, A.; Dagan, S. Interpretation of ESI(+)-MS-MS spectra-Towards the identification of “unknowns”. Int. J. Mass Spectrom. 2011, 299, 158–168. [Google Scholar] [CrossRef]
- Xu, G.; Guo, H.; Lv, H. Metabolomics Assay Identified a Novel Virulence-Associated Siderophore Encoded by the High-Pathogenicity Island in Uropathogenic Escherichia coli. J. Proteome Res. 2019, 18, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, W486–W494. [Google Scholar] [CrossRef] [PubMed]
No. of Feature 1 | m/z of [M+H]+ | Retention Time [min] | Type of Ion | Predicted Molecular Formula of [M+H]+ | Identification Based on MS/HRMS |
---|---|---|---|---|---|
*1 | 482.1229 | 13.25 | [M+H]+ | C21H28N3O4S3+ (Δm −1.5 ppm) | Ybt-A1 [18] |
*2 | 295.0565 | Fragment of Ybt-A1 | C13H15N2O2S2+ (Δm −1.5 ppm) | ||
*3 | 482.1229 | 14.21 | [M+H]+ | C21H28N3O4S3+ (Δm −1.5 ppm) | Ybt-A2 [18] |
*4 | 295.0565 | Fragment of Ybt-A2 | C13H15N2O2S2+ (Δm −1.5 ppm) | ||
*5 | 535.0340 | 10.99 | [M+H]+ | C21H25FeN3O4S3+ (Δm −2.1 ppm) | Fe(III)-Ybt [18] |
*6 | 498.1178 | 8.32 | [M+H]+ | C21H28N3O5S3+ (Δm −1.5 ppm) | Derivative 1-A |
*7 | 311.0516 | Fragment of 1-A | C13H15N2O3S2+ (Δm −0.8 ppm) | ||
*8 | 601.1270 | 7.11 | [M+H]+ | C24H33N4O6S4+ (Δm −1.2 ppm) | Derivative 2-A |
*9 | 414.0606 | Fragment of 2-A | C16H20N3O4S3+ (Δm −1.1 ppm) | ||
*10 | 307.0201 | 13.88 | [M+H]+ | C13H11N2O3S2+ (Δm −1.5 ppm) | Escherichelin [29] |
*11 | 365.0986 | 14.24 | [M+H]+ | C17H21N2O3S2+ (Δm −0.6 ppm) | Ulbactin B [31] |
*12 | 323.0550 | 7.05 | [M+H]+ | C11H19N2O3S3+ (Δm −0.7 ppm) | 8 |
*13 | 279.0651 | Fragment of 8 | C10H19N2OS3+ (Δm −1.1 ppm) | ||
*14 | 543.0369 | 9.59 | [M+H]+ | C21H26CuN3O4S3+ (Δm −1.3 ppm) | Cu(II)-Ybt [20] |
*15 | 355.9704 | Fragment of Cu(II)-Ybt | C13H13CuN2O2S2+ (Δm 1.4 ppm) | ||
*16 | 565.2345 | 6.97 | [M+H]+ | C22H37N4O13+ (Δm −1.3 ppm) | Aerobactin [47] |
C | NMR Data (MeOD) from This Study | Configuration of Carbon Atom | NMR Data (CDCl3) from Literature [44] | ||
---|---|---|---|---|---|
δC | δH | δC | δH | ||
1 | 160.3 | - | C | 159.1 | - |
2 | 117.8 | 6.95 | CH | 117.1 | 6.97 |
3 | 134.6 | 7.38 | CH | 133.5 | 7.35 |
4 | 120.2 | 6.91 | CH | 119.1 | 6.87 |
5 | 131.8 | 7.43 | CH | 130.8 | 7.40 |
6 | 117.5 | - | C | 116.1 | - |
7 | 175.2 | - | C | 174.4 | - |
8 | 34.5 | 3.34/3.51 | CH2 | 33.9 | 3.23/3.42 |
9 | 82.1 | 5.07 | CH | 80.2 | 5.10 |
10 | 62.9 | 5.30 | CH | 63.0 | 5.37 |
11 | 30.3 | 2.99/3.29 | CH2 | 30.0 | 3.00/3.31 |
12 | 67.6 | 4.60 | CH | 65.5 | 4.55 |
13 | 75.7 | 4.02 | CH | 76.0 | 4.05 |
14 | 51.4 | - | C | 49.8 | - |
15 | 179.9 | - | C | 177.3 | - |
16 | 18.8 | 1.12 | CH3 | 18.1 | 1.19 |
17 | 24.2 | 1.25 | CH3 | 23.7 | 1.3 |
m/z of the [M+H]+ Ion | Predicted Molecular Formula of M | Difference of the Predicted Molecular Formula to Ybt |
---|---|---|
482.1239 (Ybt) | C21H27N3O4S3 | - |
498.1188 (1) | C21H27N3O5S3 | O |
601.1282 (2) | C24H32N4O6S4 | C3H5NO2S |
615.1433 (3) | C25H34N4O6S4 | C4H7NO2S |
633.1003 (4) | C24H32N4O6S5 | C3H5NO2S2 |
587.1127 (5) | C23H30N4O6S4 | C2H3NO2S |
530.0911 (6) | C21H27N3O5S4 | OS |
508.1391 (7) | C23H29N3O4S3 | C2H2 |
m/z of the [M+H]+ Ion | NL of 187 Da C8H13NO2S | NL of 173 Da C7H11NO2S | Measured Ion |
---|---|---|---|
482.1239 (Ybt-A1/Ybt-A2) | 295.0570 1 C13H15N2O2S2+ | - | [M-187+H]+ |
498.1188 (1-A) | 311.0520 1 C13H15N2O3S2+ | - | [M-187+H]+ |
601.1282 (2-A) | 414.0610 1 C16H20N3O4S3+ | - | [M-187+H]+ |
615.1433 (3-A) | 428.0763 1 C17H22N3O4S3+ | - | [M-187+H]+ |
633.1003 (4-A) | 446.0329 1 C16H20N3O4S4+ | - | [M-187+H]+ |
587.1127 (5-A) | - | 414.0610 1 C16H20N3O4S3+ | [M-173+H]+ |
530.0911 (6-A) | 343.0241 1 C13H15N2O3S3+ | - | [M-187+H]+ |
508.1391 (7-A1–3) | 321.0726 1 C15H17N2O2S2+ | - | [M-187+H]+ |
m/z of [M-187+H]+ (M) | Neutral Loss | ||||
---|---|---|---|---|---|
18 Da H2O | 34 Da H2S | 88 Da C3H4OS | 105 Da C3H7NOS | 122 Da C3H6OS2 | |
295.0570 (Ybt-A1/Ybt-A2) | 277.0464 C13H13N2OS2+ | 261.0694 C13H13N2O2S+ | 207.0586 C10H11N2OS+ | 190.0320 C10H8NOS+ | 173.0709 C10H9N2O+ |
311.0520 (1-A) | 293.0413 C13H13N2O2S2+ | MS4,2 | 223.0533 C10H11N2O2S+ (MS4) | - | - |
414.0610 1 (2-A) | - | - | 326.06293 C13H16N3O3S2+ (+ MS4,2) | - | - |
428.0763 (3-A) | - | MS4,2 | MS4,2 | - | MS4,2 |
446.0329 (4-A) | - | - | 358.0348 C13H16N3O3S3+ (+ MS4,2) | - | - |
343.0241 (6-A) | 325.0135 C13H13N2O2S3+ | - | - | - | - |
321.0726 (7-A1–3) | - | - | - | - | - |
m/z of [M-187+H]+ (M) | Fragment [M-187-X+H]+ | ||||
---|---|---|---|---|---|
173.0709 C10H9N2O+ | 190.0320 C10H8NOS+ | 261.0694 C13H13N2O2S+ | 293.0413 C13H13N2O2S2+ | 295.0576 C13H15N2O2S2+ | |
295.0570 (Ybt-A1/Ybt-A2) | 122 Da C3H6OS2 | 105 Da C3H7NOS | 34 Da H2S | - | - |
311.0520 (1-A) | - | - | - | 18 Da H20 | - |
414.0610 1 (2-A) | 241 Da C6H11NO3S3 | - | 153 Da C3H7NO2S2 | 121 Da C3H7NO2S | - |
428.0763 (3-A) | 255 Da C7H13NO3S3 | - | 167 Da C4H9NO2S2 | 135 Da C4H9NO2S | 133 Da C4H7NO2S |
446.0329 (4-A) | 273 Da C6H11NO3S4 | - | 185 Da C3H7NO2S3 | 153 Da C3H7NO2S2 | 151 Da C3H5NO2S2 |
343.0241 (6-A) 2 | - | - | - | - | - |
321.0726 (7-A1–3) | - | 131 Da C5H9NOS | 60 Da C2H4S | - | - |
m/z of [M-187-X+H]+ (M) | Fragment [M-187-X-Y+H]+ | |||
---|---|---|---|---|
120.0441 C7H6NO+ | 173.0709 C10H9N2O+ | 174.0547 C10H8NO2+ | 190.0320 C10H8NOS+ | |
190.0319 (Ybt-A1/Ybt-A2) | 70 Da C3H2S | - | - | - |
208.0426 (1-A) | 88 Da C3H4OS | - | 34 Da H2S | 18 Da H2O |
293.0414 (2-A) 2 | - | - | - | - |
295.0570 (3-A) 1 | - | 122 Da C3H6OS2 | - | - |
293.0412 (3-A) 1 | - | 120 Da C3H4OS2 | - | - |
261.0690 (4-A) | - | 88 Da C3H4OS | - | - |
- -(6-A) 2 | - | - | - | - |
- -(7-A1–3) 2 | - | - | - | - |
m/z of [M-187-X+H]+ (M) | Fragment [M-187-X-Y+H]+ | ||
---|---|---|---|
205.0428 C10H9N2OS+ | 207.0583 C10H11N2OS+ | 261.0694 C13H13N2O2S+ | |
190.0319 (Ybt-A1/Ybt-A2) 2 | - | - | - |
208.0426 (1-A) 2 | - | - | - |
293.0414 (2-A) | 88 Da C3H4OS | - | - |
295.0570 (3-A) 1 | - | 88 Da C3H4OS | 34 Da H2S |
293.0412 (3-A) 1,2 | - | - | - |
261.0690 (4-A) 2 | - | - | - |
- (6-A) 2 | - | - | - |
- (7-A1–3) 2 | - | - | - |
m/z of [M-187+H]+ (M) | 87 Da C3H5NO2 | 153 Da C3H7NO2S2 | 121 Da C3H7NO2S | 119 Da C3H5NO2S |
---|---|---|---|---|
414.0610 (2-A) | 327.0292 C13H15N2O2S3+ | 261.0692 C13H13N2O2S+ | 293.0410 C13H13N2O2S2+ | - |
446.0329 (4-A) | 359.0015 C13H15N2O2S4+ | 293.0410 C13H13N2O2S2+ | 325.0135 C13H13N2O2S3+ | 327.0294 C13H15N2O2S3+ |
m/z of [M+H]+ Ion (M) | m/z of Main Fragment 365.0986 [M-X+H]+ ion C17H21N2O3S2+ | m/z of Main Fragment 378.0975 [M-X+H]+ ion C14H24N3O3S3+ | m/z of Main Fragment 466.1463 [M-X+H]+ ion C21H28N3O5S2+ |
---|---|---|---|
498.1188 (1-B) C21H28N3O5S3+ | - | 120 Da C7H4O2 | - |
601.1282 (2-B) C24H33N4O6S4+ | 236 Da C7H12N2O3S2 | - | - |
615.1433 (3-B) C25H35N4O6S4+ | 250 Da C8H14N2O3S2 | - | - |
633.1003 (4-B) C24H33N4O6S5+ | 268 Da C7H12N2O3S2 | - | - |
587.1127 (5-B) C23H31N4O6S4+ | 222 Da C6H10N2O3S2 | - | - |
530.0911 (6-B) C21H28N3O5S4+ | - | - | S2 64 Da |
m/z of [M+H]+ (M) | NEUTRAL LOSS | |||
---|---|---|---|---|
18 Da H2O | 121 Da C3H7NO2S | 135 Da C4H9NO2S | 153 Da C3H7NO2S2 | |
498.1188 (1-B) | 480.1079 C21H26N3O4S3+ | - | - | - |
601.1282 (2-B) | 583.1171 C24H31N4O5S4+ | 480.1072 C21H26N3O4S3+ | - | - |
615.1433 (3-B) | - | - | 480.1064 C21H26N3O4S3+ | - |
633.1003 (4-B) | - | - | - | 480.1072 C21H26N3O4S3+ |
587.1127 (5-B) | - | 466.0921 C20H24N3O4S3+ | - | 434.1205 C20H24N3O4S2+ |
m/z of [M+H]+ (M) | Neutral Loss | |||
---|---|---|---|---|
187 Da C8H13NO2S | 207 Da C10H9NO2S | 310 Da C13H14N2O3S2 | 320 Da C12H20N2O4S2 | |
498.1188 (1-B) | 311.0514 C13H15N2O3S2+ | 291.0832 C11H19N2O3S2+ | 188.0740 C8H14NO2S+ | - |
601.1282 (2-B) | - | - | 291.0830 C11H19N2O3S2+ | - |
615.1433 (3-B) | - | - | - | 295.0563 C13H15N2O2S2+ |
633.1003 (4-B) 1 | - | - | - | - |
587.1127 (5-B) 1 | - | - | - | - |
Step of Fractionation | Volume [mL] | ACN/Water/FA (v/v/v) |
---|---|---|
1 | 120 | 15/85/0.1 |
2 | 60 | 20/80/0.1 |
3 | 60 | 25/75/0.1 |
4 | 60 | 30/70/0.1 |
5 | 60 | 35/65/0.1 |
6 | 80 | 80/20/0.1 |
7 | 80 | 100/0/0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulz, M.; Gaitanoglou, V.; Mantel, O.; Hövelmann, Y.; Hübner, F.; Dobrindt, U.; Humpf, H.-U. Metabolomics Study on Pathogenic and Non-pathogenic E. coli with Closely Related Genomes with a Focus on Yersiniabactin and Its Known and Novel Derivatives. Metabolites 2020, 10, 221. https://doi.org/10.3390/metabo10060221
Schulz M, Gaitanoglou V, Mantel O, Hövelmann Y, Hübner F, Dobrindt U, Humpf H-U. Metabolomics Study on Pathogenic and Non-pathogenic E. coli with Closely Related Genomes with a Focus on Yersiniabactin and Its Known and Novel Derivatives. Metabolites. 2020; 10(6):221. https://doi.org/10.3390/metabo10060221
Chicago/Turabian StyleSchulz, Mareike, Vasiliki Gaitanoglou, Olena Mantel, Yannick Hövelmann, Florian Hübner, Ulrich Dobrindt, and Hans-Ulrich Humpf. 2020. "Metabolomics Study on Pathogenic and Non-pathogenic E. coli with Closely Related Genomes with a Focus on Yersiniabactin and Its Known and Novel Derivatives" Metabolites 10, no. 6: 221. https://doi.org/10.3390/metabo10060221
APA StyleSchulz, M., Gaitanoglou, V., Mantel, O., Hövelmann, Y., Hübner, F., Dobrindt, U., & Humpf, H. -U. (2020). Metabolomics Study on Pathogenic and Non-pathogenic E. coli with Closely Related Genomes with a Focus on Yersiniabactin and Its Known and Novel Derivatives. Metabolites, 10(6), 221. https://doi.org/10.3390/metabo10060221