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Abstract: During asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract for extended
periods of time without causing symptoms of urinary tract infection. Previous studies indicate that
many Escherichia coli (E. coli) strains that cause ABU have evolved from uropathogenic E. coli (UPEC)
by reductive evolution and loss of the ability to express functional virulence factors. For instance, the
prototype ABU strain 83972 has a smaller genome than UPEC strains with deletions or point mutations
in several virulence genes. To understand the mechanisms of bacterial adaptation and to find out
whether the bacteria adapt in a host-specific manner, we compared the complete genome sequences
of consecutive reisolates of ABU strain 83972 from different inoculated individuals and compared
them with the genome of the parent strain. Reisolates from different hosts exhibited individual
patterns of genomic alterations. Non-synonymous SNPs predominantly occurred in coding regions
and often affected the amino acid sequence of proteins with global or pleiotropic regulatory function.
These gene products are involved in different bacterial stress protection strategies, and metabolic and
signaling pathways. Our data indicate that adaptation of E. coli 83972 to prolonged growth in the
urinary tract involves responses to specific growth conditions and stresses present in the individual
hosts. Accordingly, modulation of gene expression required for survival and growth under stress
conditions seems to be most critical for long-term growth of E. coli 83972 in the urinary tract.
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1. Introduction

Normal flora furnishes the host with ecological barriers that prevent pathogen attack while
maintaining tissue homeostasis. Despite their vast numbers and staggering molecular complexity,
microbiomes of the gut, respiratory and urogenital tracts persist without triggering a destructive
host response. This lack of destructive inflammation is fascinating and important, as it reflects
exquisite molecular regulation of the host environment by commensal bacteria. Simultaneously, the
host regulates permitted and unwanted paths of immune activation by discriminating attacking
pathogens from beneficial commensals.

The failure of asymptomatic carrier strains to trigger disease-associated signaling pathways
and pathology has generally been attributed to their lack of virulence and, until recently, it was not
clear if, in addition, asymptomatic carrier strains enhance their persistence by actively modifying the
host environment. We have discovered that commensal bacteria modulate host gene expression to
ensure that destructive immune activation will not occur [1]. These immune-modulatory mechanisms
provide a rich source for novel therapeutic interventions against pathogen-specific, disease-associated
host responses, which are not evoked by closely related non-pathogenic variants. This is especially
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important since a paradigm shift is needed to minimize the use of antibiotics and to develop new,
appropriate therapies.

2. Urinary Tract Infection (UTI)

UTI constitutes a highly relevant model of microbial adaptation, in which the contrasting roles
of pathogens and commensals are clearly displayed [2]. Pathogens disrupt the mucosal barrier in
the kidneys, causing severe, potentially life-threatening disease, urosepsis and mortality. Recurrent,
acute pyelonephritis is also a cause of end-stage renal disease, with the associated morbidity and need
for dialysis and transplantation, in addition to the personal and economic burdens associated with
chronic illness.

Innate immunity controls the resistance to UTI. Uropathogenic Escherichia coli (UPEC) activate an
innate immune response through virulence factor–specific TLR4 signaling, the TRIF/TRAM adaptors,
MAPK-, p38- and CREB phosphorylation and IRF3/IRF7, AP1-dependent transcription. We have
shown that Irf3´{´ mice develop severe, acute symptoms accompanied by urosepsis and renal abscess
formation, demonstrating that the innate immune response orchestrated by IRF-3 is crucial for bacterial
clearance and for renal tissue integrity. Human disease relevance is suggested by an increased frequency
of functionally relevant IRF3 promoter polymorphisms in about 70% of patients with recurrent acute
pyelonephritis [3].

Recently, the soluble pattern recognition molecule pentraxin 3 (PTX3) was identified as a novel
determinant of host resistance to UTI [4]. PTX3 is a key component of the humoral arm of innate
immunity and Ptx3-deficient mice showed defective control of UTI, increased tissue inflammation and
tissue damage. PTX3 was detected in patient urine and PTX3 polymorphisms correlated with APN
susceptibility, identifying PTX3 as the first humoral pattern recognition molecule in innate resistance
against UTI.

3. Asymptomatic Bacteriuria (ABU) Is Protective

ABU is the most common form of UTI and the majority of ABU cases are caused by E. coli.
Asymptomatic bacterial carriage in the bladder resembles commensalism at other mucosal sites. While
a variety of bacteria may establish ABU [5], the identification of species other than E. coli should be
regarded with caution as a potential sign of impaired host defense functions and problems associated
with multi-drug resistance. Patients with ABU may carry the same strain for months or years without
developing a disease response, leaving these commensal-like bacteria to successfully co-evolve with
their hosts in a niche with little microbial competition. In epidemiological studies, ABU has been
shown to protect against recurrent, symptomatic infection with more virulent strains [6].

We have used this protective effect as a rationale to deliberately establish ABU in patients with
therapy-resistant recurrent UTI (Figure 1) [7]. The prototype ABU strain E. coli 83972 was first isolated
during an epidemiologic study of ABU in schoolgirls [6] and was selected for human inoculation as it
fails to express virulence factors associated with symptomatic UTI and lacks conjugative plasmids [8].
Therapeutic urinary tract inoculation with E. coli 83972 establishes persistent, protective bacteriuria,
as demonstrated in placebo-controlled studies [7,9]. Clinical use of E. coli 83972 has recently been
endorsed in the European Urology Guidelines from 2014.
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Figure 1. Deliberate bladder inoculation with E. coli 83972 is used therapeutically, to protect against 
recurrent urinary tract infection. 

4. Results and Discussion 

4.1. Bacterial Evolution towards Commensalism rather than Virulence 

Bacteria increase their fitness in new host niches by rapid adaptation to changing environmental 
conditions. They lose or gain genetic material and, through selection, new variants become fixed in 
the population. Evolution has mainly been assumed to favor virulence, which promotes host-to-host 
spread and tissue attack. Until recently, evolution of commensalism had not been considered. We 
have proposed that ABU strains evolve towards commensalism in human hosts, as defined by a 
reduction in overall genome size, inactivation of virulence genes and modifications of transcriptional 
regulators [10,11]. Some ABU strains, such as the ABU E. coli strain VR50, have been also shown to 
evolve from commensal strains by gaining colonization factors [12]. 

Epidemiologic studies have established that the severity of UTI reflects the virulence profile of 
the infecting strain, with a higher frequency of tissue-attacking virulence factors expressed by UPEC 
strains than by most strains causing ABU [13,14], despite the presence of virulence gene sequences in 
many ABU strains [15]. Until recently, the molecular basis for this discrepancy has not been 
examined. Our results have established that ABU strains evolve towards commensalism through 
reductive evolution in human hosts [10], resulting in overall genome size reduction and systematic 
inactivation of virulence genes, either by the accumulation of point mutations or deletions [11,16]: 
Sequencing of the E. coli 83972 genome revealed a common ancestry with uropathogenic E. coli strains 
but a smaller genome size due to multiple deletions and mutations, suggesting that this strain 
adapted to the human urinary tract by undergoing reductive evolution [10,16] (Figure 2). For 
example, a large fim deletion and several papG point mutations abolish fimbrial expression and 
adherence [11]. Extended sequencing and phenotypic characterization has since confirmed that ABU 
strains undergo reductive evolution by a reduction in genome size and an accumulation of genomic 
alterations, which result in specific loss of expression or decay of UPEC virulence genes [17]. 

4.2. Host-Specific Genome Alterations in Inoculated Hosts 

To determine adaptation during long-term bladder colonization, we analyzed the genome 
sequence of ABU E. coli isolate 83972 (Figure 2) and compared this sequence to genomes of other 
model UPEC strains and non-pathogenic E. coli K-12 strain MG1655 to identify strain-specific 
genomic regions. Re-sequencing of E. coli 83972 reisolates after therapeutic bladder colonization of 
different patients led to the observation that hosts personalize their bacteria, thus providing the first, 
genome-wide example of a single bacterial strain’s evolution in different, deliberately inoculated 

Figure 1. Deliberate bladder inoculation with E. coli 83972 is used therapeutically, to protect against
recurrent urinary tract infection.

4. Results and Discussion

4.1. Bacterial Evolution towards Commensalism rather than Virulence

Bacteria increase their fitness in new host niches by rapid adaptation to changing environmental
conditions. They lose or gain genetic material and, through selection, new variants become fixed in
the population. Evolution has mainly been assumed to favor virulence, which promotes host-to-host
spread and tissue attack. Until recently, evolution of commensalism had not been considered. We
have proposed that ABU strains evolve towards commensalism in human hosts, as defined by a
reduction in overall genome size, inactivation of virulence genes and modifications of transcriptional
regulators [10,11]. Some ABU strains, such as the ABU E. coli strain VR50, have been also shown to
evolve from commensal strains by gaining colonization factors [12].

Epidemiologic studies have established that the severity of UTI reflects the virulence profile of
the infecting strain, with a higher frequency of tissue-attacking virulence factors expressed by UPEC
strains than by most strains causing ABU [13,14], despite the presence of virulence gene sequences in
many ABU strains [15]. Until recently, the molecular basis for this discrepancy has not been examined.
Our results have established that ABU strains evolve towards commensalism through reductive
evolution in human hosts [10], resulting in overall genome size reduction and systematic inactivation
of virulence genes, either by the accumulation of point mutations or deletions [11,16]: Sequencing of
the E. coli 83972 genome revealed a common ancestry with uropathogenic E. coli strains but a smaller
genome size due to multiple deletions and mutations, suggesting that this strain adapted to the human
urinary tract by undergoing reductive evolution [10,16] (Figure 2). For example, a large fim deletion and
several papG point mutations abolish fimbrial expression and adherence [11]. Extended sequencing
and phenotypic characterization has since confirmed that ABU strains undergo reductive evolution by
a reduction in genome size and an accumulation of genomic alterations, which result in specific loss of
expression or decay of UPEC virulence genes [17].

4.2. Host-Specific Genome Alterations in Inoculated Hosts

To determine adaptation during long-term bladder colonization, we analyzed the genome
sequence of ABU E. coli isolate 83972 (Figure 2) and compared this sequence to genomes of other model
UPEC strains and non-pathogenic E. coli K-12 strain MG1655 to identify strain-specific genomic regions.
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Re-sequencing of E. coli 83972 reisolates after therapeutic bladder colonization of different patients led
to the observation that hosts personalize their bacteria, thus providing the first, genome-wide example
of a single bacterial strain’s evolution in different, deliberately inoculated patients. A general survey of
the genome structure of E. coli 83972 reisolates from six patients revealed marked differences between
patient reisolates and the ancestral strain [10]. We identified 34 mutations, which affected metabolic and
virulence-related genes. Frequently, genes coding for regulators with pleiotropic function were affected.
The comparative genomic analysis showed that the individual number of mutations within the
genomes of in vivo reisolates was markedly higher than in in vitro–evolved E. coli 83972 descendants.
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tract, bacteria are exposed to high levels of reactive oxygen and/or nitrogen species, which are either 
produced to support host defense mechanisms or which can be generated during anaerobic bacterial 
growth in urine. Due to the presence of inorganic ions and urea, urine imposes marked osmotic stress 
on bacterial cells. The independent acquisition of mutations in genes involved in oxidative or osmotic 
stress response supports the idea that adaptive evolution of corresponding traits improves bacterial 
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transcriptome analysis (Figure 3). Overall, the affected genes are involved in osmoregulation, in 
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in the early and in the later reisolates, suggesting that growth in the host environment requires and 
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Figure 2. Comparative genome sequence analysis of ABU E. coli isolate 83972. Comparison of the
chromosome of E. coli strain 83972 (ABU isolate), E. coli K-12 strain MG1655, and E. coli UTI isolates
UTI89, CFT073 and 536. The localization of rather strain-specific or conserved genomic islands (regions
1–4 and regions I–VII) as well as of prophage genomes (prophage 1–6) in the E. coli 83972 chromosome
is indicated.

Several genomic loci were independently affected in different individual patient reisolates, but not
upon prolonged propagation in the in vitro evolution experiment. These loci may represent mutation
hotspots under positive selection in vivo, indicating that E. coli is subjected to conserved evolutionary
patterns during prolonged bladder colonization. During colonization of the urinary tract, bacteria
are exposed to high levels of reactive oxygen and/or nitrogen species, which are either produced to
support host defense mechanisms or which can be generated during anaerobic bacterial growth in urine.
Due to the presence of inorganic ions and urea, urine imposes marked osmotic stress on bacterial cells.
The independent acquisition of mutations in genes involved in oxidative or osmotic stress response
supports the idea that adaptive evolution of corresponding traits improves bacterial fitness in this
niche. A marked difference between the reisolates was also demonstrated by transcriptome analysis
(Figure 3). Overall, the affected genes are involved in osmoregulation, in oxidative stress response
and in global regulation of virulence and fitness traits. The analysis of consecutive reisolates from
the same patient confirmed that several genomic alterations were present in the early and in the later
reisolates, suggesting that growth in the host environment requires and promotes the stabilization of
these genomic changes. Thus, our results provide evidence that adaptive bacterial evolution is driven
by individual host environments.
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This host-specific loss of gene function supports the hypothesis that evolution towards
commensalism rather than virulence is favored during asymptomatic bladder colonization. Ongoing
collaborative studies aim to identify the mechanisms by which different hosts personalize their
microbiota at the genomic level and the host response variables that drive bacterial adaptation by
continuous monitoring of host transcription in individual patients, as well as their state of health
and proteomic profile, including inflammatory mediators and immune variables. We also observed
that ABU strains actively modify the host environment by inhibiting RNA polymerase II–dependent
gene expression [1] and Ambite et al., this issue. The molecular determinants of evolution towards
commensalism and host modulation remain to be defined. Innate immune activation is limited in
ABU [18], suggesting that different host response pathways and effector molecules drive bacterial
commensalism. Human therapeutic inoculation offers a unique setting to study the in vivo interactions
between commensals and their human hosts in sufficient detail to address those questions.
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Figure 3. Gene expression in reisolates of E. coli 83972 from individual hosts. Hierarchical clustering
of deregulated genes in in vivo reisolates PI-2, PII-4 and PIII-4 and in vitro grown strain 4.9 relative to
parent E. coli strain 83972 upon in vitro growth in pooled human urine [10].

4.3. Host-Specific Gene Expression Levels and Phenotypic Variation in Inoculated Hosts

Diverse pheno- and genotypic comparisons uncovered striking differences among in vivo 83972
reisolates, which were rarely observed in in vitro–evolved E. coli 83972 reisolates. To evaluate changes
on the transcriptional level, transcriptome analyses were performed and the transcriptome of parent
strain 83972 was compared with those of selected in vivo and in vitro reisolates upon growth in pooled
human urine. The number of significantly deregulated genes was, on average, four-fold higher than
in the in vivo–evolved strains compared with the in vitro–grown strain. These genes were mainly
involved in different stress responses, iron acquisition, metabolic versatility and LPS biosynthesis,
but the expression patterns differed between reisolates from different patients [10] (Figure 4). In vivo
reisolates of E. coli strain 83972 differed in growth characteristics (e.g., growth rate and competitive
fitness in pooled human urine). Reisolates with slower growth rates in urine were also less competitive
relative to ancestor strain 83972. Many reisolates formed less biofilm than parent strain 83972. This
phenotype could be correlated with motility and flagella expression [10]. Accordingly, the expression
of virulence or fitness traits in E. coli is modulated in response to the individual host. Further
genome-wide, transcriptome and proteome analysis proved that these genomic changes altered
bacterial gene expression, resulting in unique adaptation patterns in each patient affecting iron uptake
strategies as well as protection against oxidative or nitrosative stress, general stress response, and
utilization of different carbon sources [10,19].
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Figure 4. Factors affecting genome plasticity and host-dependent adaptation of E. coli in the urinary
tract. Deliberate colonization of individual patients (e.g., P1–P6) with E. coli strain 83972 allows studying
host-dependent adaptation of E. coli strain 83972 over prolonged periods of time. Colonization of
the urinary tract of individual patients results in various selective pressures due to individual host
responses, nutrient supply and bacterial competition that drive host-specific bacterial adaptation.

A number of different microbial strategies for bacterial persistence in urine have been discussed
(for a recent review see [20]). So far, it remains unclear to what extent changes in bacterial growth
rate influence the adaptation in individual hosts. Persistence in the urinary tract might be affected by
alterations in bacterial growth rates as metabolic responses of the bacteria are influenced by nutrient
availability, general urine composition, presence of antimicrobial factors in urine and by the host
response. In addition, E. coli strains have specific strategies for protection against osmotic stress, and
for resisting the bactericidal effects of the host defenses.

Interestingly, we observed phenotypic variation in the E. coli 83972 monoculture populating the
bladder [19]. This phenotype switching mirrors adverse and stress conditions, and it may ensure the
fitness and survival of a subset of cells in this niche. The occurrence of two phenotypes in a clonal
population [20] suggests bistable gene expression, which can be used by the bacteria to efficiently
exploit dynamic host environments and to promote gene expression changes, for example during
chronic infection [21]. Small colony variant formation has been correlated with chronic infection and it
is considered a survival strategy relying on stress-fit individuals in a heterogeneous population [22].
Therefore, bacterial adaptation to long-term in vivo growth in the urinary tract could include phenotype
switching. Alternatively, the occurrence of heterogeneous populations at symptomatic episodes may
represent spontaneous stochastic events including minor transient populations [23].

E. coli 83972 colonizes the human urinary tract without inducing a strong immune response and
can even actively suppress host gene expression. Genome comparison demonstrated that this strain
is a deconstructed, attenuated uropathogen. Although we were able to shed some light on bacterial
strategies and conditions which may promote attenuation and E. coli adaptation during prolonged
colonization of the urinary tract, specific genomic features of strain 83972, which may account for all
aspects of the asymptomatic bladder colonization, have not yet been identified. The detailed analysis
of the molecular mechanisms required for the specific bacterium-host interaction resulting in a weak
host response will be an important task for future studies to understand how this strain actively
modifies the host environment in order to promote persistence.
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