A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics
2.2. Multiple Linear Regression Models Analysis
2.3. Evaluation of Platelet Isolation and Metabolite Detection Methods
3. Discussion
4. Materials and Methods
4.1. Setting
4.2. Participants
4.3. Collection of Blood Samples
4.4. Platelet Isolation for Assessment of Mitochondrial Respiration
4.5. Sample Extraction for Metabolomics
4.6. Platelet Mitochondrial Respiration Measurements
4.7. Quantitative 1-D- 1H-NMR Metabolomics
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.; Pittet, J.F. The Coagulopathy of Acute Sepsis. Curr. Opin. Anaesthesiol. 2015, 28, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, E.; Lupia, E.; Bosco, O.; Vizio, B.; Montrucchio, G. Platelets and Multi-Organ Failure in Sepsis. Int. J. Mol. Sci. 2017, 18, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014, 5, 66–72. [Google Scholar] [CrossRef]
- Brand, M.; Nicholls, D. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Avila, C.; Huang, R.J.; Stevens, M.V.; Aponte, A.M.; Tripodi, D.; Kim, K.Y.; Sack, M.N. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp. Clin. Endocrinol. Diabetes 2012, 120, 248–251. [Google Scholar] [CrossRef]
- Merlo Pich, M.; Bovina, C.; Formiggini, G.; Cometti, G.G.; Ghelli, A.; Parenti Castelli, G.; Genova, M.L.; Marchetti, M.; Semeraro, S.; Lenaz, G. Inhibitor sensitivity of respiratory complex I in human platelets: A possible biomarker of ageing. FEBS Lett. 1996, 380, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cardenes, N.; Corey, C.; Erzurum, S.C.; Shiva, S. Platelets from Asthmatic Individuals Show Less Reliance on Glycolysis. PLoS ONE 2015, 10, e0132007. [Google Scholar] [CrossRef] [Green Version]
- Sjovall, F.; Morota, S.; Frostner, E.A.; Hansson, M.J.; Elmer, E. Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS ONE 2014, 9, e103756. [Google Scholar] [CrossRef]
- Sjovall, F.; Morota, S.; Hansson, M.J.; Friberg, H.; Gnaiger, E.; Elmer, E. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit. Care 2010, 14, R214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puskarich, M.A.; Kline, J.A.; Watts, J.A.; Shirey, K.; Hosler, J.; Jones, A.E. Early alterations in platelet mitochondrial function are associated with survival and organ failure in patients with septic shock. J. Crit. Care 2016, 31, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorente, L.; Martin, M.M.; Lopez-Gallardo, E.; Blanquer, J.; Sole-Violan, J.; Labarta, L.; Diaz, C.; Jimenez, A.; Montoya, J.; Ruiz-Pesini, E. Decrease of oxidative phosphorylation system function in severe septic patients. J. Crit. Care 2015, 30, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.M.; Lopez-Gallardo, E.; Iceta, R.; Blanquer, J.; Sole-Violan, J.; Labarta, L.; Diaz, C.; Jimenez, A.; Montoya, J.; et al. Higher platelet cytochrome oxidase specific activity in surviving than in non-surviving septic patients. Crit. Care 2014, 18, R136. [Google Scholar] [CrossRef] [Green Version]
- Protti, A.; Fortunato, F.; Caspani, M.L.; Pluderi, M.; Lucchini, V.; Grimoldi, N.; Solimeno, L.P.; Fagiolari, G.; Ciscato, P.; Zella, S.M.; et al. Mitochondrial changes in platelets are not related to those in skeletal muscle during human septic shock. PLoS ONE 2014, 9, e96205. [Google Scholar] [CrossRef]
- Protti, A.; Fortunato, F.; Artoni, A.; Lecchi, A.; Motta, G.; Mistraletti, G.; Novembrino, C.; Comi, G.P.; Gattinoni, L. Platelet mitochondrial dysfunction in critically ill patients: Comparison between sepsis and cardiogenic shock. Crit. Care 2015, 19, 39. [Google Scholar] [CrossRef] [Green Version]
- Eckerle, M.; Ambroggio, L.; Puskarich, M.A.; Winston, B.; Jones, A.E.; Standiford, T.J.; Stringer, K.A. Metabolomics as a Driver in Advancing Precision Medicine in Sepsis. Pharmacotherapy 2017, 37, 1023–1032. [Google Scholar] [CrossRef]
- Chacko, B.K.; Smith, M.R.; Johnson, M.S.; Benavides, G.; Culp, M.L.; Pilli, J.; Shiva, S.; Uppal, K.; Go, Y.M.; Jones, D.P.; et al. Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. Redox Biol. 2019, 22, 101165. [Google Scholar] [CrossRef]
- Chacko, B.; Kramer, P.; Ravi, S.; Benavides, G.; Mitchell, T.; Dranka, B.; Ferrick, D.; Singal, A.; Ballinger, S.; Bailey, S.; et al. The Bioenergetic Health Index: A new concept in mitochondrial translational research. Clin. Sci. 2014, 127, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Divakaruni, A.S.; Brand, M.D. The regulation and physiology of mitochondrial proton leak. Physiology 2011, 26, 192–205. [Google Scholar] [CrossRef]
- Cheng, J.; Nanayakkara, G.; Shao, Y.; Cueto, R.; Wang, L.; Yang, W.Y.; Tian, Y.; Wang, H.; Yang, X. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Adv. Exp. Med. Biol. 2017, 982, 359–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stoppelaar, S.F.; van’t Veer, C.; van der Poll, T. The role of platelets in sepsis. Thromb. Haemost. 2014, 112, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, R.N.; Colman, R.W. ADP-induced platelet activation. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 437–502. [Google Scholar] [CrossRef] [PubMed]
- Horjus, D.L.; Nieuwland, R.; Boateng, K.B.; Schaap, M.C.L.; van Montfrans, G.A.; Clark, J.F.; Sturk, A.; Brewster, L.M. Creatine kinase inhibits ADP-induced platelet aggregation. Sci. Rep. 2014, 4, 6551. [Google Scholar] [CrossRef] [Green Version]
- Michel, V.; Yuan, Z.; Ramsubir, S.; Bakovic, M. Choline transport for phospholipid synthesis. Exp. Biol. Med. 2006, 231, 490–504. [Google Scholar] [CrossRef]
- Fidler, T.P.; Middleton, E.A.; Rowley, J.W.; Boudreau, L.H.; Campbell, R.A.; Souvenir, R.; Funari, T.; Tessandier, N.; Boilard, E.; Weyrich, A.S.; et al. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation. Arter. Thromb. Vasc. Biol. 2017, 37, 1628–1639. [Google Scholar] [CrossRef] [Green Version]
- Miglis, M.; Wilder, D.; Reid, T.; Bakaltcheva, I. Effect of taurine on platelets and the plasma coagulation system. Platelets 2002, 13, 5–10. [Google Scholar] [CrossRef]
- Hayes, K.C.; Pronczuk, A.; Addesa, A.E.; Stephan, Z.F. Taurine modulates platelet aggregation in cats and humans. Am. J. Clin. Nutr. 1989, 49, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Kohoutova, M.; Dejmek, J.; Tuma, Z.; Kuncova, J. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiol. Res. 2018, 67, S577–S592. [Google Scholar] [CrossRef]
- Van Wyngene, L.; Vandewalle, J.; Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: Therapeutic targets at last? EMBO Mol. Med. 2018, 10, e8712. [Google Scholar] [CrossRef]
- Puskarich, M.A.; Evans, C.R.; Karnovsky, A.; Das, A.K.; Jones, A.E.; Stringer, K.A. Septic Shock Nonsurvivors Have Persistently Elevated Acylcarnitines Following Carnitine Supplementation. Shock 2018, 49, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.P.; Chen, G.Y.; Chuang, T.Y.; Huang, Y.T.; Chang, H.T.; Chen, Y.F.; Liu, W.L.; Chen, Y.J.; Hsu, C.L.; Huang, M.T.; et al. Increased Plasma Acetylcarnitine in Sepsis Is Associated With Multiple Organ Dysfunction and Mortality: A Multicenter Cohort Study. Crit. Care Med. 2019, 47, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 2004, 4, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.E.; Brown, M.D.; Trzeciak, S.; Shapiro, N.I.; Garrett, J.S.; Heffner, A.C.; Kline, J.A. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: A meta-analysis. Crit. Care Med. 2008, 36, 2734–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjovall, F.; Ehinger, J.K.; Marelsson, S.E.; Morota, S.; Frostner, E.A.; Uchino, H.; Lundgren, J.; Arnbjornsson, E.; Hansson, M.J.; Fellman, V.; et al. Mitochondrial respiration in human viable platelets--methodology and influence of gender, age and storage. Mitochondrion 2013, 13, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Belikova, I.; Lukaszewicz, A.C.; Faivre, V.; Damoisel, C.; Singer, M.; Payen, D. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit. Care Med. 2007, 35, 2702–2708. [Google Scholar] [CrossRef]
- Paglia, G.; Magnúsdóttir, M.; Thorlacius, S.; Sigurjónsson, Ó.E.; Guðmundsson, S.; Palsson, B.Ø.; Thiele, I. Intracellular metabolite profiling of platelets: Evaluation of extraction processes and chromatographic strategies. J. Chromatogr. B 2012, 898, 111–120. [Google Scholar] [CrossRef]
- McHugh, C.E.; Flott, T.L.; Schooff, C.R.; Smiley, Z.; Puskarich, M.A.; Myers, D.D.; Younger, J.G.; Jones, A.E.; Stringer, K.A. Rapid, Reproducible, Quantifiable NMR Metabolomics: Methanol and Methanol: Chloroform Precipitation for Removal of Macromolecules in Serum and Whole Blood. Metabolites 2018, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
Variable | Sepsis Patients | Controls (n = 9) | |
---|---|---|---|
Whole Blood (n = 17) | Platelet (n = 14) | ||
Age (IQR) * | 59 (52–67) | 57 (50–67) | 53 (32–56) |
Race (%) | |||
White | 8 (47) | 8 (57) | 2 (22) |
African-American | 9 (53) | 6 (43) | 7 (78) |
Ethnicity (%) | |||
Non-Hispanic | 17 (100) | 14 (100) | 9 (100) |
Hispanic | 0 (0) | 0 (0) | 0 (0) |
Sex (%) | |||
Male | 10 (59) | 8 (57) | 4 (44) |
Female | 7 (41) | 6 (43) | 5 (56) |
28-day mortality (%) | 2 (12) | 1 (7) | 0 (0) |
BMI kg/m2 (IQR) * | 25.6 (23–34) | 26.6 (23–33) | 31.5 (24–46) |
Preexisting conditions (%) | |||
Coronary artery disease | 2 (12) | 2 (14) | 0 (0) |
End-stage renal disease | 2 (12) | 2 (14) | 0 (0) |
Chronic obstructive pulmonary disease | 5 (29) | 5 (36) | 1 (11) |
Chronic heart failure | 0 (0) | 0 (0) | 1 (11) |
Cirrhosis | 1 (6) | 0 (0) | 0 (0) |
Peripheral vascular disease | 1 (6) | 1 (7) | 0 (0) |
Cerebrovascular accident | 1 (6) | 2 (14) | 0 (0) |
Malignancy | 4 (24) | 1 (7) | 0 (0) |
Vital signs (IQR) * | |||
Heart rate (beats/min) | 102 (86–106) | 102 (87–107) | 85 (77–88) |
Systolic blood pressure (mmHg) | 110 (104–119) | 110 (98–116) | 145 (128–149) |
Diastolic blood pressure (mmHg) | 65 (59–72) | 64 (59–68) | 84 (81–98) |
Baseline laboratory (SD) | |||
Creatinine (mg/dL) | 1.8 (1.3) | 1.6 (1.2) | n/a |
Platelet count (×1000 cells/mm3) | 205 (148) | 182 (100) | n/a |
White blood count (×1000 cells/mm3) | 15 (7.8) | 15.75 (8.2) | n/a |
Disease severity (IQR) * | |||
SOFA (enrollment) | 5 (3–9) | 4.5 (3–8.5) | n/a |
Lactate mM (enrollment) | 1.8 (1.2–2.1) | 2 (1.2–2.1) | n/a |
Statistic | Basal | State 4o | Max |
---|---|---|---|
Median | 0.0861 | 0.0191 | 0.1141 |
IQR | 0.0626–0.1117 | 0.0060–0.0267 | 0.1010–0.1364 |
Response (y) | Covariates (x) | β Coefficient (p-Value) | Adj.-R2 | Pred.- R2 | ANOVA (p-Value) |
---|---|---|---|---|---|
State 4o | PLT.Creatine | −0.009 (0.081) | 0.836 | 0.629 | (0.0003) * |
PLT.ADP | 0.066 (0.000) * | ||||
PLT.Choline | −0.047 (0.000) * | ||||
PLT.Glucose | 0.015 (0.026) * | ||||
Basal | PLT.ADP | 0.141 (0.000) * | 0.711 | 0.608 | (0.0004) * |
PLT.Taurine | −0.107 (0.000) * | ||||
Basal | WB.Leucine | 0.084 (0.002) * | 0.428 | 0.308 | (0.0079) * |
WB.O.Acetylcarnitine | −0.049 (0.066) | ||||
State 4o | WB.Alanine | 0.042 (0.060) | 0.281 | −0.111 | (0.039) * |
WB.2.Hydroxybutyrate | 0.026 (0.099) | ||||
Max | WB.3.Hydroxybutyrate | 0.017 (0.049) * | 0.236 | −0.033 | (0.0595) |
WB.AMP | 0.032 (0.088) | ||||
Max | PLT.Creatine | 0.022 (0.080) | 0.170 | −0.147 | (0.0801) |
Sepsis Pathway | Metabolites | |
---|---|---|
Whole Blood | Platelet | |
Energy metabolism | Leucine | Creatine, ADP *, Choline *, Glucose * |
Mitochondrial dysfunction | Acetylcarnitine | n/a |
Platelet activation/aggregation | Taurine | ADP *, Choline *, Glucose * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCann, M.R.; McHugh, C.E.; Kirby, M.; Jennaro, T.S.; Jones, A.E.; Stringer, K.A.; Puskarich, M.A. A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis. Metabolites 2020, 10, 139. https://doi.org/10.3390/metabo10040139
McCann MR, McHugh CE, Kirby M, Jennaro TS, Jones AE, Stringer KA, Puskarich MA. A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis. Metabolites. 2020; 10(4):139. https://doi.org/10.3390/metabo10040139
Chicago/Turabian StyleMcCann, Marc R., Cora E. McHugh, Maggie Kirby, Theodore S. Jennaro, Alan E. Jones, Kathleen A. Stringer, and Michael A. Puskarich. 2020. "A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis" Metabolites 10, no. 4: 139. https://doi.org/10.3390/metabo10040139
APA StyleMcCann, M. R., McHugh, C. E., Kirby, M., Jennaro, T. S., Jones, A. E., Stringer, K. A., & Puskarich, M. A. (2020). A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis. Metabolites, 10(4), 139. https://doi.org/10.3390/metabo10040139