Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain
Abstract
:1. Introduction
2. Results
2.1. Cohort Comparisons in Human Brain Tissue
2.2. Human Brain Metabolite Analysis
2.2.1. Newcastle Cohort
2.2.2. Manchester Cohort
2.2.3. Comparison of All Cohorts
2.3. Effect of PMD on Metabolomic Analysis of Rat Brain Tissue
3. Discussion
3.1. Metabolomic Analysis
3.2. Effect of PMD on Metabolomic Analyses in Rat Brain Tissues
3.3. Conclusions
4. Materials and Methods
4.1. Diagnosis & Severity of Human Cases
4.2. Tissue Dissection
4.3. GC-MS
4.4. Data Acquisition and Reduction
4.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scholefield, M.; Church, S.J.; Xu, J.; Kassab, S.; Gardiner, N.J.; Roncaroli, F.; Hooper, N.M.; Unwin, R.D.; Cooper, G.J.S. Evidence that levels of nine essential metals in post-mortem human-Alzheimer’s-brain and ex vivo rat-brain tissues are unaffected by differences in post-mortem delay, age, disease staging, and brain bank location. Metallomics 2020, 12, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Begley, P.; Church, S.J.; Patassini, S.; Hollywood, K.A.; Jullig, M.; Curtis, M.A.; Waldvogel, H.J.; Faull, R.L.; Unwin, R.D.; et al. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim. Biophys. Acta 2016, 1862, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Ansoleaga, B.; Jove, M.; Schluter, A.; Garcia-Esparcia, P.; Moreno, J.; Pujol, A.; Pamplona, R.; Portero-Otin, M.; Ferrer, I. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol. Aging 2015, 36, 68–80. [Google Scholar] [CrossRef]
- Cleeland, C.; Pipingas, A.; Scholey, A.; White, D. Neurochemical changes in the aging brain: A systematic review. Neurosci. Biobehav. Rev. 2019, 98, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Sijens, P.E.; den Heijer, T.; Origgi, D.; Vermeer, S.E.; Breteler, M.M.; Hofman, A.; Oudkerk, M. Brain changes with aging: MR spectroscopy at supraventricular plane shows differences between women and men. Radiology 2003, 226, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Coyle, T.; Lancaster, J.; Robin, D.A.; Hardies, J.; Kochunov, V.; Bartzokis, G.; Stanley, J.; Royall, D.; Schlosser, A.E.; et al. Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage 2010, 49, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.J.; Sachdev, P.S.; Wen, W.; Valenzuela, M.J.; Brodaty, H. Cognitive correlates of 1H MRS measures in the healthy elderly brain. Brain Res. Bull. 2005, 66, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Durrenberger, P.F.; Fernando, S.; Kashefi, S.N.; Ferrer, I.; Hauw, J.J.; Seilhean, D.; Smith, C.; Walker, R.; Al-Sarraj, S.; Troakes, C.; et al. Effects of antemortem and postmortem variables on human brain mRNA quality: A BrainNet Europe study. J. Neuropathol. Exp. Neurol. 2010, 69, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Ervin, J.F.; Heinzen, E.L.; Cronin, K.D.; Goldstein, D.; Szymanski, M.H.; Burke, J.R.; Welsh-Bohmer, K.A.; Hulette, C.M. Postmortem delay has minimal effect on brain RNA integrity. J. Neuropathol. Exp. Neurol. 2007, 66, 1093–1099. [Google Scholar] [CrossRef] [Green Version]
- White, K.; Yang, P.; Li, L.; Farshori, A.; Medina, A.E.; Zielke, H.R. Effect of Postmortem Interval and Years in Storage on RNA Quality of Tissue at a Repository of the NIH NeuroBioBank. Biopreserv. Biobank. 2018, 16, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.C.; Palmer, L.; Love, S.; Hamard, M.; Esiri, M.; Ansorge, O.; Lett, D.; Attems, J.; Morris, C.; Troakes, C.; et al. Extended post-mortem delay times should not be viewed as a deterrent to the scientific investigation of human brain tissue: A study from the Brains for Dementia Research Network Neuropathology Study Group, UK. Acta Neuropathol. 2016, 132, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Tapia-Gonzalez, S.; Garcia, A.; Munoz, A.; DeFelipe, J.; Barbas, C. Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct. Funct. 2017, 222, 2831–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, Z.; Kekesi, K.A.; Bobest, M.; Torok, T.; Szilagyi, N.; Szikra, T.; Szepesi, Z.; Nyilas, R.; Dobolyi, A.; Palkovits, M.; et al. Post mortem degradation of nucleosides in the brain: Comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J. Neurosci. Methods 2005, 148, 88–93. [Google Scholar] [CrossRef]
- Roubein, I.F.; Embree, L.J. Post mortem stability of catecholamines in discrete regions of rat brain. Res. Commun. Chem. Pathol. Pharmacol. 1979, 23, 143–153. [Google Scholar] [PubMed]
- Siew, L.K.; Love, S.; Dawbarn, D.; Wilcock, G.K.; Allen, S.J. Measurement of pre- and post-synaptic proteins in cerebral cortex: Effects of post-mortem delay. J. Neurosci. Methods 2004, 139, 153–159. [Google Scholar] [CrossRef]
- Machaalani, R.; Gozal, E.; Berger, F.; Waters, K.A.; Dematteis, M. Effects of post-mortem intervals on regional brain protein profiles in rats using SELDI-TOF-MS analysis. Neurochem. Int. 2010, 57, 655–661. [Google Scholar] [CrossRef]
- An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 318–329. [Google Scholar] [CrossRef]
- Mosconi, L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin. Transl. Imaging 2013, 1, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Mosconi, L.; Pupi, A.; De Leon, M.J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2008, 1147, 180–195. [Google Scholar] [CrossRef]
- Robinson, A.C.; Roncaroli, F.; Chew-Graham, S.; Davidson, Y.S.; Minshull, J.; Horan, M.A.; Payton, A.; Pendleton, N.; Mann, D.M.A. The Contribution of Vascular Pathology Toward Cognitive Impairment in Older Individuals with Intermediate Braak Stage Tau Pathology. J. Alzheimer’s Dis. 2020, 77, 1005–1015. [Google Scholar] [CrossRef]
- Malek-Ahmadi, M.; Perez, S.E.; Chen, K.; Mufson, E.J. Braak Stage, Cerebral Amyloid Angiopathy, and Cognitive Decline in Early Alzheimer’s Disease. J. Alzheimer’s Dis. 2020, 74, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Schuff, N.; Capizzano, A.A.; Du, A.T.; Amend, D.L.; O’Neill, J.; Norman, D.; Jagust, W.J.; Chui, H.C.; Kramer, J.H.; Reed, B.R.; et al. Different patterns of N-acetylaspartate loss in subcortical ischemic vascular dementia and AD. Neurology 2003, 61, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glodzik, L.; Sollberger, M.; Gass, A.; Gokhale, A.; Rusinek, H.; Babb, J.S.; Hirsch, J.G.; Amann, M.; Monsch, A.U.; Gonen, O. Global N-acetylaspartate in normal subjects, mild cognitive impairment and Alzheimer’s disease patients. J. Alzheimer’s Dis. 2015, 43, 939–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Begley, P.; Church, S.J.; Patassini, S.; McHarg, S.; Kureishy, N.; Hollywood, K.A.; Waldvogel, H.J.; Liu, H.; Zhang, S.; et al. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: Metabolic basis for dementia. Sci. Rep. 2016, 6, 27524. [Google Scholar] [CrossRef] [PubMed]
- Patassini, S.; Begley, P.; Reid, S.J.; Xu, J.; Church, S.J.; Curtis, M.; Dragunow, M.; Waldvogel, H.J.; Unwin, R.D.; Snell, R.G.; et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem. Biophys. Res. Commun. 2015, 468, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Manchester Controls | Newcastle Controls | Auckland Controls |
---|---|---|---|
Number | 9 | 9 | 9 |
Age | 89 (82–95) | 85 (76–94) | 73 (61–78) a,c |
Male Gender, n (%) | 6 (66.7) | 6 (66.7%) | 7 (53.8) |
Braak Stage | I-II (0-I–II) | I-II (I–II) | 0 (0–II) a,c |
PMD (hours) | 75 (49–130) | 25 (9–40) b | 12 (5.5–15.0) c |
Whole Brain Weight (g) † | 1160 (1020–1494) | 1235 (1064–1406) | 1260 (1094–1461) |
CAA Score | None/Mild | Moderate * | NA |
CERAD | 0 (0–A) | 0 (0) | NA |
Variable | Manchester Cases | Newcastle Cases | Auckland Cases |
Number | 9 | 9 | 9 |
Age | 83 (61–89) | 83 (70–95) | 72 (60–80) a |
Male Gender, n (%) | 3 (33.3) | 6 (66.7%) | 5 (55.6) |
Braak Stage | IV-V (IV–VI) | VI (VI–VI) b | V-VI (IV–VI) c |
PMD (hours) | 39 (12–70) | 25 (9–41) b | 7 (4.0–12.0) c |
Whole Brain Weight (g) † | 1066 (900–1359) | 1155 (959–1351) | 1062 (831–1355) |
CAA Score | Mild/Moderate | Moderate/Severe * | NA |
CERAD | C (B–C) | C (B–C) * | NA |
Metabolite | Cortex | Cerebellum | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ratio at 0 h | Ratio at 24 h | Ratio at 48 h | Ratio at 72 h | p-Value (0 vs. 72 h) | Ratio at 0 h | Ratio at 24 h | Ratio at 48 h | Ratio at 72 h | p-Value (0 vs. 72 h) | |
Alternative Fuel Sources | ||||||||||
Lactic acid 2 | 0.6 | 0.5 | 0.6 | 0.6 | 0.9 | 0.4 | 0.5 | 0.5 | 0.5 | 0.8 |
Amino Acids and Related Compounds | ||||||||||
Hydroxylamine 2 | 3.0 | 3.7 | 1.6 | 1.8 | 0.8 | 1.9 | 1.4 | 1.5 | 1.2 | 0.5 |
N-acetylaspartic acid (NAA)1 | 12.3 | 13.8 | 12.6 | 12.3 | 0.9 | 24.5 | 25.3 | 22.4 | 21.7 | 1.0 |
Pyroglutamic acid 1 | 0.02 | 0.02 | 0.02 | 0.02 | 1.0 | 0.002 | 0.002 | 0.002 | 0.002 | 0.8 |
Glucose & Related Metabolites | ||||||||||
Glucose 2 | 0.01 | 0.01 | 0.02 | 0.02 | 0.3 | 0.04 | 0.04 | 0.05 | 0.05 | 0.8 |
Other | ||||||||||
1-Methyl-N,N-bis(trimethylsilyl)-4-[(trimethylsilyl)oxy]-1H-imidazol-2-amine 2 | 41.7 | 42.6 | 45.1 | 47.2 | 0.6 | 2.5 | 2.9 | 2.6 | 2.2 | 0.9 |
1-piperidinecarboxaldehyde 2 | 0.05 | 0.07 | 0.03 | 0.03 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.9 |
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione 2 | 0.01 | 0.02 | 0.01 | 0.01 | 0.4 | 0.1 | 0.2 | 0.2 | 0.2 | 1.0 |
Benzoic acid 2 | 0.03 | 0.03 | 0.02 | 0.02 | 0.3 | 0.008 | 0.007 | 0.009 | 0.009 | 0.6 |
Malic acid 2 | 0.6 | 0.7 | 0.7 | 0.7 | 0.4 | 0.06 | 0.06 | 0.07 | 0.07 | 0.7 |
Palmitic acid 1 | 5.4 | 8.0 | 6.4 | 6.7 | 0.3 | 4.2 | 4.8 | 4.8 | 5.8 | 0.2 |
Phthalic acid 2 | 3.3 | 4.1 | 2.8 | 3.0 | 1.0 | NI | NI | NI | NI | NI |
Phosphoric acid 2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.07 | 0.05 | 0.04 | 0.05 | 0.04 | 0.5 |
Silanol 2 | 15.2 | 17.0 | 14.9 | 14.8 | 1.0 | 13.2 | 14.4 | 13.0 | 14.0 | 1.0 |
Stearic acid 1 | 2.6 | 4.4 | 2.9 | 3.0 | 0.4 | 5.9 | 6.7 | 6.7 | 8.1 | 0.2 |
Threitol 2 | 0.07 | 0.09 | 0.09 | 0.09 | 0.2 | 0.007 | 0.009 | 0.010 | 0.010 | 0.7 |
Urea 2 | 5.7 | 2.6 | 2.7 | 2.1 | 0.09 | 0.7 | 0.8 | 0.8 | 0.7 | 0.7 |
Metabolite | Fold-Change | |
---|---|---|
Cortex | Cerebellum | |
Alternative Fuel Sources | ||
Glycerol-3-phosphate 1 | 0.5 | 0.8 |
Amino Acids and Related Compounds | ||
Aspartic acid 1 | 1.2 | 2.3 |
Cysteine1 | 7.2 | 5.9 |
Ethanolamine 1 | 0.7 | 1.9 |
GABA 2 | 1.0 | 2.0 |
Glycine 1 | 4.1 | 2.1 |
Isoleucine 1 | 2.1 | 3.8 |
Leucine 1 | 2.2 | 3.2 |
Methionine 1 | 1.3 | 6.4 |
Phenylalanine 1 | 3.2 | 9.0 |
Proline 1 | 1.5 | 7.2 |
Serine 2 | 1.3 | 2.3 |
Threonine 1 | 0.5 | 1.8 |
Tyrosine 1 | 3.8 | NI |
Valine 1 | 2.1 | 3.4 |
Glucose & Related Metabolites | ||
Fructose 1 | 0.7 | 0.5 |
Ribose 2 | 2.0 | 2.5 |
Ribose-5-phosphate 1 | 1.6 | 2.4 |
Sorbitol 1 | 1.7 | 1.7 |
Nucleosides | ||
Adenosine 1 | 0.05 | 0.1 |
Uracil 2 | 2.8 | 3.2 |
Uridine 1 | 0.3 | 0.3 |
Other | ||
9H-purin-6-amine 2 | 1.8 | EXC |
Hydroxybutyric acid 1 | 1.3 | 2.0 |
Pantothenic acid 1 | 1.9 | 1.4 |
Butanedioic acid 2 | 2.0 | 2.4 |
Ethylbis(trimethylsilyl)amine 2 | 0.2 | 1.0 |
Ascorbic acid 2 | 0.2 | EXC |
Propanoic acid 2 | 5.8 | 5.0 |
Pyroglutamic acid 1 | 0.3 | 0.9 |
Glycerol 2 | 3.1 | 4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholefield, M.; Church, S.J.; Xu, J.; Robinson, A.C.; Gardiner, N.J.; Roncaroli, F.; Hooper, N.M.; Unwin, R.D.; Cooper, G.J.S. Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain. Metabolites 2020, 10, 438. https://doi.org/10.3390/metabo10110438
Scholefield M, Church SJ, Xu J, Robinson AC, Gardiner NJ, Roncaroli F, Hooper NM, Unwin RD, Cooper GJS. Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain. Metabolites. 2020; 10(11):438. https://doi.org/10.3390/metabo10110438
Chicago/Turabian StyleScholefield, Melissa, Stephanie J. Church, Jingshu Xu, Andrew C. Robinson, Natalie J. Gardiner, Federico Roncaroli, Nigel M. Hooper, Richard D. Unwin, and Garth J. S. Cooper. 2020. "Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain" Metabolites 10, no. 11: 438. https://doi.org/10.3390/metabo10110438
APA StyleScholefield, M., Church, S. J., Xu, J., Robinson, A. C., Gardiner, N. J., Roncaroli, F., Hooper, N. M., Unwin, R. D., & Cooper, G. J. S. (2020). Effects of Alterations of Post-Mortem Delay and Other Tissue-Collection Variables on Metabolite Levels in Human and Rat Brain. Metabolites, 10(11), 438. https://doi.org/10.3390/metabo10110438