Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Subjects and Sample Collection
2.2. Plasma Level Measurement of Cytokines (TNF-α, IFN-γ and IL-10)
2.3. Statistical Analysis
3. Results
Plasma Levels of Pro- (IFN-γ and TNF-α) and Anti-Inflammatory Cytokines (IL-10) in MDR-TB and DS-TB Cases
4. Discussion
4.1. Relationship between MDR-TB and Socio-Demographic Information
4.2. Plasma Concentration of the Cytokines (IL-10, IFN-γ and TNF-α)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; de Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M.A.; Goletti, D.; et al. Towards tuberculosis elimination: An action framework for low-incidence countries. Eur. Respir. J. 2015, 45, 928–952. [Google Scholar] [CrossRef] [PubMed]
- Jassal, M.S.; Bishai, W.R. Epidemiology and challenges to the elimination of global tuberculosis. Clin. Infect. Dis. 2010, 50 (Suppl. 3), S156–S164. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Tuberculosis Report 2017. (WHO/HTM/TB/2017.04); WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf (accessed on 13 December 2018).
- Kurz, S.G.; Furin, J.J.; Bark, C.M. Drug-Resistant Tuberculosis: Challenges and Progress. Infect. Dis. Clin. N. Am. 2016, 30, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Diel, R.; Vandeputte, J.; de Vries, G.; Stillo, J.; Wanlin, M.; Nienhaus, A. Costs of tuberculosis disease in the European Union: A systematic analysis and cost calculation. Eur. Respir. J. 2014, 43, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Skrahina, A.; Hurevich, H.; Zalutskaya, A.; Sahalchyk, E.; Astrauko, A.; Hoffner, S.; Rusovich, V.; Dadu, A.; de Colombani, P.; Dara, M.; et al. Multidrug-resistant tuberculosis in Belarus: The size of the problem and associated risk factors. Bull. World Health Organ. 2013, 91, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ulmasova, D.J.; Uzakova, G.; Tillyashayhov, M.N.; Turaev, L.; van Gemert, W.; Hoffmann, H.; Zignol, M.; Kremer, K.; Gombogaram, T.; Gadoev, J.; et al. Multidrug-resistant tuberculosis in Uzbekistan: Results of a nationwide survey, 2010 to 2011. Eur. Surveill. 2013, 17, 20609. [Google Scholar] [CrossRef]
- Berhan, A.; Berhan, Y.; Yizengaw, D. A Meta-Analysis of Drug Resistant Tuberculosis in Sub-Saharan Africa: How Strongly Associated with Previous Treatment and HIV Co-Infection? Ethiop. J. Health Sci. 2013, 23, 271–282. [Google Scholar] [CrossRef]
- Zignol, M.; van Gemert, W.; Falzon, D.; Sismanidis, C.; Glaziou, P.; Floyd, K.; Raviglione, M. Surveillance of anti-tuberculosis drug resistance in the world: An updated analysis, 2007–2010. Bull. World Health Organ. 2012, 90, 111D–119D. [Google Scholar] [CrossRef]
- Abubakar, I.; Zignol, M.; Falzon, D.; Raviglione, M.; Ditiu, L.; Masham, S.; Adetifa, I.; Ford, N.; Cox, H.; Lawn, S.D.; et al. Drug-resistant tuberculosis: Time for visionary political leadership. Lancet Infect. Dis. 2013, 13, 529–539. [Google Scholar] [CrossRef]
- Owusu-Dabo, E.; Adjei, O.; Meyer, C.G.; Horstmann, R.D.; Enimil, A.; Kruppa, T.F.; Bonsu, F.; Browne, E.N.L.; Chinbuah, M.A.; Osei, I.; et al. Mycobacterium tuberculosis drug resistance, Ghana. Emerg. Infect. Dis. 2006, 12, 1170–1172. [Google Scholar] [CrossRef]
- Domingo-Gonzalez, R.; Prince, O.; Cooper, A.; Khader, S.A. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol. Spectr. 2016, 4, 1–58. [Google Scholar]
- Adrian, T.B.R.; Montiel, J.L.; Fernandez, G.; Valecillo, A. Role of Cytokines and other Factors Involved in the Mycobacterium Tuberculosis Infection. World J. Immunol. 2015, 5, 16–50. [Google Scholar] [CrossRef]
- Olsen, A.; Chen, Y.; Ji, Q.; Zhu, G.; De Silva, A.D.; Vilcheze, C.; Weisbrod, T.; Li, W.; Xu, J.; Larsen, M.; et al. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio 2016, 7, e01023-15. [Google Scholar] [CrossRef]
- Addo, K.K.; Yeboah-manu, D.; Dan-Dzide, M.; Owusu-Darko, K.; Caulley, P.; Mensah, G.I.; Minamikawa, M.; Lienhardt, C.; Bonsu, F.A.; Ofori-Adjei, D. Diagnosis of Tuberculosis in Ghana: The role of laboratory training. Ghana Med. J. 2010, 44. [Google Scholar] [CrossRef]
- Siddiqi, S.; Ahmed, A.; Asif, S.; Behera, D.; Javaid, M.; Jani, J.; Jyoti, A.; Mahatre, R.; Mahto, D.; Richter, E.; et al. Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of multidrug resistance using the Bactec MGIT 960 system: A multicenter study. J. Clin. Microbiol. 2012, 50, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.Y.; Enarson, D.A.; Yu, M.C.; Bai, K.J.; Huang, R.M.; Hsu, C.J.; Suo, J.; Lin, T.P. Outcome of pulmonary multidrug-resistant tuberculosis: A 6-yrs follow-up study. Eur. Respir. J. 2006, 5, 980–985. [Google Scholar] [CrossRef]
- Ollé-Goig, J.E.; Sandy, R. Outcomes of individualised treatment for multidrug-Resistant Tuberculosis before DOTs-plus. Int. J. Tuberculosis Lung Dis. 2005, 9, 765–770. [Google Scholar]
- Kpessa, M.W. The politics of retirement income security policy in Ghana: Historical trajectories and transformative capabilities. Afri. J. Pol. Sci. Int. Relat. 2011, 5, 92–102. [Google Scholar]
- Nhamoyebonde, S.; Alasdair, L. Biological differences between the sexes and susceptibility to Tuberculosis. J. Infect. Dis. 2014, 209 (Suppl. 3), S100–S106. [Google Scholar] [CrossRef]
- Eftekhar, M.; Pourmasumi, S.; Sabeti, P.; Aflatoonian, A.; Sheikhha, M.H. Mycobacterium tuberculosis infection in women with unexplained infertility. Int. J. Reprod. Biomed. 2015, 13, 749–754. [Google Scholar] [CrossRef]
- Atre, S.R.; Kudale, A.M.; Morankar, S.N.; Rangan, S.G.; Weiss, M.G. Cultural concepts of tuberculosis and gender among the general population without tuberculosis in rural Maharashtra, India. Trop. Med. Int. Health 2004, 9, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Rao, S. Tuberculosis and patient gender: An analysis and its implications in tuberculosis control. Lung India 2009, 26, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Horton, K.C.; MacPherson, P.; Houben, R.M.; White, R.G.; Corbett, E.L. Sex Differences in Tuberculosis Burden and Notifications in Low- and Middle-Income Countries: A Systematic Review and Meta-analysis. PLoS Med. 2016, 13, e1002119. [Google Scholar] [CrossRef] [PubMed]
- World Health Organiation. Global Tuberculosis Control: Surveillance, Planning and Financing; WHO: Geneva, Switzerland, 2004; Available online: http//www.who.int/g.tb (accessed on 8 December 2017).
- Silva, D.R.; Mu-oz-Torrico, M.; Duarte, R.; Galvão, T.; Bonini, E.H.; Arbex, F.F.; Arbex, M.A.; Augusto, V.M.; Rabahi, M.F.; Carvalho de, Q.M.F.; et al. Risk factors for tuberculosis: Diabetes, smoking, alcohol use, and the use of other drugs. J. Bras. Pneumol. 2018, 44, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lienhardt, C.; Glaziou, P.; Uplekar, M.; Lönnroth, K.; Getahun, H.; Raviglione, M. Global tuberculosis control: Lessons learnt and future prospects. Nat. Rev. Microbiol. 2012, 10, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Bennadi, D. Self-medication: A current challenge. J. Basic Clin. Pharm. 2013, 5, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Bhatias, S.; Dranyi, T.; Ronley, D. Tuberculosis among Tibetan refugees in India. Soc. Med. 2002, 54, 423–432. [Google Scholar] [CrossRef]
- Zetola, N.M.; Modongo, C.; Kip, E.C.; Gross, R.; Bisson, G.P.; Collman, R.G. Alcohol use and abuse among patients with multidrug-resistant tuberculosis in Botswana. Int. J. Tuberc. Lung Dis. 2012, 16, 1529–1534. [Google Scholar] [CrossRef]
- Ferreira-Borges, C.; Parry, C.D.; Babor, T.F. Harmful Use of Alcohol: A Shadow over Sub-Saharan Africa in Need of Workable Solutions. Int. J. Environ. Res. Public Health 2017, 14, 346. [Google Scholar] [CrossRef]
- O’Connell, R.; Chishinga, N.; Kinyanda, E.; Patel, V.; Ayles, H.; Weiss, H.A.; Seedat, S. Prevalence and correlates of alcohol dependence disorder among TB and HIV infected patients in Zambia. PLoS ONE 2013, 8, e74406. [Google Scholar]
- Imtiaz, S.; Shield, K.D.; Roerecke, M.; Samokhvalov, A.V.; Lönnroth, K.; Rehm, J. Alcohol consumption as a risk factor for tuberculosis: Meta-analyses and burden of disease. Eur. Respir. J. 2017, 50, 1700216. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, K.; Bloss, E. Alcohol brewing and the African tuberculosis epidemic. Med Anthropol. 2011, 30, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.F.; Meintjes, G.; Wilkinson, R.J. HIV-1 and the immune response to TB. Future Virol. 2013, 8, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Roider, J.M.; Muenchhoff, M.; Goulder, P.J. Immune activation and paediatric HIV-1 disease outcome. Curr. Opin. HIV AIDS 2016, 11, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.; Assefa, N.; Mengistie, B. Prevalence of extrapulmonary tuberculosis among people living with HIV/AIDS in sub-Saharan Africa: A systemic review and meta-analysis. HIV/AIDS 2018, 10, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Amelio, P.; Portevin, D.; Reither, K.; Mhimbira, F.; Mpina, M.; Tumbo, A.; Nickel, B.; Marti, H.; Knopp, S.; Ding, S.; et al. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl. Trop. Dis. 2017, 11, e0005817. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kaul, A.; Tsolaki, A.G.; Kishore, U.; Bhakta, S. Mycobacterium tuberculosis: Immune evasion, latency and reactivation. Immunobiology 2012, 217, 363–374. [Google Scholar] [CrossRef]
- Ellison, M.A.; Gearheart, C.M.; Porter, C.C.; Ambruso, D.R. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils. PLoS ONE 2017, 12, e0185956. [Google Scholar] [CrossRef] [PubMed]
- Amanda, M.; Elena, S.; Mauricio, A.; Rajko, R. TNF-α in Tuberculosis: A Cytokine with a Split Personality. Inflamm Allergy Drug Targets 2009, 8, 53–62. [Google Scholar]
- Redford, P.S.; Murray, P.J.; O’Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal. Immunol. 2011, 4, 261–270. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Mattos, A.M.; Almeida Cde, S.; Franken, K.L. Increased IgG1, IFN-gamma, TNF-alpha and IL-6 responses to Mycobacterium tuberculosis antigens in patients with tuberculosis are lower after chemotherapy. Int. Immunol. 2010, 22, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, J.; Winkler, H.-M.; Zwick, R.H.; Müller, C.; Rumetshofer, R.; Boeck, L.; Burghuber, O.C.; Winkler, S. Specific cytokine patterns of pulmonary tuberculosis in Central Africa. Clin. Immunol. 2012, 138, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xiao, H.; Fan, Y.; Wu, F.; Zhang, Z.; Li, H.; Yang, Y. Changes of pro-inflammatory cytokines and their receptors in serum from patients with pulmonary tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi 2002, 25, 325–329. [Google Scholar] [PubMed]
- Kart, L.; Buyukoglan, H.; Tekin, I.O.; Altin, R.; Senturk, Z.; Gulmez, I.; Demir, R.; Ozesmi, M. Correlation of serum tumornecrosisfactor-alpha, interleukin-4 and soluble interleukin-2 receptor levels with radiologic and clinical manifestationsin active pulmonary tuberculosis. Mediators Inflamm. 2003, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.; Ponnana, M.; Sivangala, R.; Chelluri, L.K.; Nallari, P.; Penmetsa, S.; Valluri, V.; Gaddam, S. Evaluation of TNF-α, IL-10 and IL-6 Cytokine Production and Their Correlation with Genotype Variants amongst Tuberculosis Patients and Their Household Contacts. PLoS ONE 2015, 10, e0137727. [Google Scholar] [CrossRef]
- Ameglio, F.; Casarini, M.; Capoluongo, E.; Mattia, P.; Puglisi, G.; Giosue, S. Post-treatment changes of six cytokines in active pulmonary tuberculosis: Differences between patients with stable or increased fibrosis. Int. J. Tuberc. Lung Dis. 2005, 9, 98–104. [Google Scholar]
- Gallegos, A.M.; van Heijst, J.W.; Samstein, M.; Su, X.; Pamer, E.G.; Glickman, M.S. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog. 2011, 7, e1002052. [Google Scholar] [CrossRef]
- Tötemeyer, S.; Sheppard, M.; Lloyd, A.; Roper, D.; Dowson, C.; Underhill, D.; Murray, P.; Maskell, D.; Bryant, C. IFN-γ enhances production of nitric oxide from macrophages via a mechanism that depends on Nucleotide Oligomerization Domain-2. J. Immunol. 2006, 176, 4804–4810. [Google Scholar] [CrossRef]
- Hoeksema, M.A.; Scicluna, B.P.; Boshuizen, M.C.; vander Velden, S.; Neele, A.E.; Vanden Bossche, J.; Matlung, H.L.; van den Berg, T.K.; Goossens, P.; de Winther, M.P. IFN-γ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J. Immunol. 2015, 194, 3909–3916. [Google Scholar] [CrossRef]
- Sasindran, S.J.; Torrelles, J.B. Mycobacterium Tuberculosis Infection and Inflammation: What is Beneficial for the host and for the bacterium? Front. Microbiol. 2011, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Figen, D.; Handan, A.H.; Teyfik, T.; HamdiMuz, M. Changes in serum cytokine levels in activetuberculosis with treatment. Med. Inflamm. 2005, 5, 256–262. [Google Scholar]
Characteristics | MDR-TB Cases, n (%) | DS-TB Cases, n (%) | p-Value | Chi-Square (X2) |
---|---|---|---|---|
Gender | ||||
Male | 34 (69.4) | 23 (67.7) | 0.866 | 0.028 |
Female | 15 (30.6) | 11 (32.3) | ||
Age (years) | ||||
18–23 | 8 (16.3) | 10 (29.4) | 0.111 | 2.571 |
24–29 | 5 (10.2) | 5 (14.7) | ||
30–35 | 9 (18.4) | 6 (17.7) | ||
36–41 | 13 (26.5) | 9 (26.5) | ||
42–47 | 12 (24.5) | 3 (8.8) | ||
48–53 | 2 (4.1) | 1 (2.9) | ||
Marital status | ||||
Married | 26 (53.1) | 22 (64.7) | 0.570 | 1.126 |
Separated | 13 (26.5) | 7 (20.6) | ||
Divorced | 10 (20.4) | 5 (14.7) | ||
Residency | ||||
City | 15 (30.6) | 0 (0.0) | 0.005 | 12.946 |
Urban | 15 (30.6) | 14 (41.2) | ||
Suburban | 17 (34.7) | 17 (50.0) | ||
Rural | 2 (4.1) | 3 (8.8) | ||
Education Level | ||||
Tertiary | 1 (2.0) | 6 (17.6) | 0.042 | 9.895 |
High school | 11 (22.5) | 10 (29.5) | ||
J.S.S. | 3 (6.1) | 4 (11.7) | ||
Middle school | 4 (8.2) | 1 (2.9) | ||
Elementary school | 30 (61.2) | 13 (38.3) | ||
Employment Status | ||||
Employed | 5 (10.2) | 11 (32.4) | 0.001 | 19.404 |
Self-employed | 10 (20.4) | 15 (44.1) | ||
Farmer | 6 (12.2) | 0 (0.0) | ||
Student | 4 (8.2) | 5 (14.7) | ||
Unemployed | 23 (46.9) | 3 (8.8) | ||
Alcohol Intake | ||||
Alcohol drinkers | 22 (44.9) | 8 (23.5) | 0.046 | 3.971 |
Non-Alcohol drinkers | 27 (55.1) | 26 (76.5) | ||
Smoking Status | ||||
Smokers | 9 (18.4) | 2 (5.9) | 0.099 | 2.721 |
Non-smokers | 40 (81.6) | 32 (94.1) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basingnaa, A.; Antwi-Baffour, S.; Nkansah, D.O.; Afutu, E.; Owusu, E. Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases 2019, 7, 2. https://doi.org/10.3390/diseases7010002
Basingnaa A, Antwi-Baffour S, Nkansah DO, Afutu E, Owusu E. Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases. 2019; 7(1):2. https://doi.org/10.3390/diseases7010002
Chicago/Turabian StyleBasingnaa, Anthony, Samuel Antwi-Baffour, Dinah Obenewaa Nkansah, Emmanuel Afutu, and Enid Owusu. 2019. "Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana" Diseases 7, no. 1: 2. https://doi.org/10.3390/diseases7010002
APA StyleBasingnaa, A., Antwi-Baffour, S., Nkansah, D. O., Afutu, E., & Owusu, E. (2019). Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases, 7(1), 2. https://doi.org/10.3390/diseases7010002