Viral Vectors in Gene Therapy
Abstract
:1. Introduction
2. Viral Vectors
2.1. Types of Vectors
2.2. Preclinical Studies
2.2.1. Adenoviruses
2.2.2. Adeno-Associated Viruses
2.2.3. Herpes Simplex Viruses
2.2.4. Retroviruses
2.2.5. Lentiviruses
2.2.6. Alphaviruses
2.2.7. Flaviviruses
2.2.8. Rhabdoviruses
2.2.9. Measles Viruses
2.2.10. Newcastle Disease Viruses
2.2.11. Coxsackieviruses
2.2.12. Poxviruses
2.3. Clinical Trials
2.4. Approved Drugs
3. Conclusions
Conflicts of Interest
Funding
References
- Raper, S.E.; Chirmule, N.; Lee, F.S.; Wivel, S.A.; Bagg, A.; Gao, G.P.; Wilson, J.M.; Batshaw, M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 2003, 80, 148–158. [Google Scholar] [CrossRef] [PubMed]
- McCormack, M.P.; Rabbitts, T.H. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2004, 350, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Schiedner, G.; Morral, N.; Parks, R.S.; Wu, Y.; Koopmans, S.C.; Langston, C.; Graham, F.L.; Beaudet, A.L.; Kochanek, S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 1998, 18, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Z.; Tian, H.; Qi, M.; Zhai, Z.; Li, S.; Li, R.; Zhang, H.; Wang, W.; Fu, S.; et al. Biodistribution and safety assessment of bladder cancer specific oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr. Gene Ther. 2012, 12, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Fan, J.; Liao, J.; Zou, Y.; Song, D.; Liu, J.; Cui, J.; Liu, F.; Ma, C.; Hu, X.; et al. Engineering the rapid adenovirus production and amplification (RAPA) cell line to expedite the generation of recombinant adenoviruses. Cell. Physiol. Biochem. 2017, 41, 2383–2398. [Google Scholar] [CrossRef] [PubMed]
- Samulski, R.J.; Muzycka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol. 2014, 1, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, W.J.; Cho, Y.H.; Lee, Y.I.; Lee, H.; Jeong, S.; Cho, E.S.; Chang, S.I.; Moon, S.K.; Kang, B.S.; et al. Cancer gene therapy using adeno-associated virus vectors. Front. Biosci. 2008, 13, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Mingozzi, F.; High, K.A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013, 122, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Grieger, C.; Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol. 2005, 79, 9933–9944. [Google Scholar] [CrossRef] [PubMed]
- McClements, M.E.; MacLaren, R.R. Adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J. Biol. Med. 2017, 90, 611–623. [Google Scholar] [PubMed]
- Epstein, A.L.; Marconi, P.; Argnani, R.; Manservigi, R. HSV-1 derived recombinant and amplicon vectors for gene transfer and gene therapy. Curr. Gene Ther. 2005, 5, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.D.; Cassam, A.K.; Chan, B.; Peters, A.A.; Weaver, L.C.; Dekaban, G.A. A multi-mutant herpes simplex virus vector has minimal cytotoxic effects on the distribution of filamentous actin, alpha-actinin and a glutamate receptor in differentiated PC-12 cells. J. Neurovirol. 2000, 6, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Schambach, A.; Morgan, A. Retroviral vectors for cancer gene therapy. Recent Results Cancer Res. 2016, 209, 17–35. [Google Scholar] [PubMed]
- Hu, W.S.; Pathak, V.K. Design of retroviral vectors and helper cells for gene therapy. Pharmacol. Rev. 2000, 52, 493–511. [Google Scholar] [PubMed]
- Vigna, E.; Naldini, L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gen. Med. 2000, 2, 308–316. [Google Scholar] [CrossRef]
- Kay, M.A.; Glorioso, J.C.; Naldini, L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001, 7, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Self-replicating RNA viral vectors in vaccine development and gene therapy. Future Virol. 2016, 11, 345–356. [Google Scholar] [CrossRef]
- Lundstrom, K. Latest trends in cancer gene therapy applying viral vectors. Future Virol. 2017, 12, 667–684. [Google Scholar] [CrossRef]
- Csatary, L.K.; Moss, R.W.; Beuth, H.; Töröcsik, B.; Szerenbenyl, J.; Bakacs, T. Beneficial treatment of patients with advanced cancer using a Newcastle disease virus vaccine (MHT-68/H). Anticancer Res. 1999, 19, 635–638. [Google Scholar] [PubMed]
- Lundstrom, K. New frontiers in oncolytic viruses: Optimizing and selecting for virus strains with improved efficacy. Biol. Targets Ther. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Crainic, R.; Couderc, T.; Martin, A.; Wychowski, C.; Girard, M.; Horaud, F. An insight into poliovirus biology. Adv. Exp. Med. Biol. 1989, 257, 61–66. [Google Scholar] [PubMed]
- Bradley, S.; Jakes, A.D.; Harrington, K.; Pandha, H.; Melcher, A.; Errington-Mais, F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother. 2014, 3, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.; Honig, H.; Kaufmann, H.L. Poxviruses as vectors for cancer immunotherapy. Curr. Opin. Drug Discov. Devel. 2003, 6, 161–168. [Google Scholar] [PubMed]
- Zeh, H.J.; Bartlett, D.L. Development of a replication-selective oncolytic proxvirus for the treatment of human cancers. Cancer Gene Ther. 2002, 9, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, M.J.; Lattime, E.C. Virotherapy clinical trials for regional disease: In situ immune modulation using recombinant poxvirus vectors. Cancer Gene Ther. 2002, 9, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Niemann, J.; Kühnel, F. Oncolytic viruses: Adenoviruses. Virus Genes 2017, 53, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Nagasato, M.; Rin, Y.; Yamamoto, Y.; Henmi, M.; Hiraoka, N.; Chiwaki, F.; Matsusaki, K.; Tagawa, M.; Sasaki, H.; Aoki, K. A tumor-targeting adenovirus with high gene-transduction efficiency for primary pancreatic cancer and ascites cells. Anticancer Res. 2017, 37, 3599–3605. [Google Scholar] [PubMed]
- Yamamoto, Y.; Nagasato, M.; Rin, Y.; Henmi, M.; Ino, Y.; Yachida, S.; Ohki, R.; Hiraoka, N.; Tagawa, M.; Aoki, K. Strong antitumor efficacy of a pancreatic tumor-targeting oncolytic adenovirus for neuroendocrine tumors. Cancer Med. 2017, 6, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
- Emdad, L.; Das, S.K.; Wang, X.Y.; Sarkar, D.; Fisher, P.B. Cancer Terminator Viruses (CVT): A better solution for viral-based therapy of cancer. J. Cell. Physiol. 2017. [Google Scholar] [CrossRef]
- Ehrke-Schulz, E.; Zhang, W.; Gao, J.; Ernhardt, A. Recent advances in preclinical developments using adenovirus hybrid vectors. Hum. Gene Ther. 2017, 28, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Panek, W.K.; Kane, J.R.; Young, J.S.; Rashidi, A.; Kim, J.W.; Kanojia, D.; Lesniak, M.S. Hitting the nail on the head: Combining oncolytic adenovirus-mediated virotherapy and immodulation for the treatment of glioma. Oncotarget 2017, 8, 89391–89405. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, S.; Di, Y.; Bauzon, M.; Lei, J.; Duffy, M.R.; Alvis, S.; Champion, B.; Lieber, A.; Hermiston, T.; Seymour, L.W.; et al. Preclinical safety studies of Enadenotucirev, a chimeric group B human-specific oncolytic virus. Mol. Ther. Oncolytics 2017, 5, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Sinnett, S.E.; Gray, S.J. Recent endeavors in MECP2 gene transfer for gene therapy of Rett syndrome. Discov. Med. 2017, 24, 153–159. [Google Scholar] [PubMed]
- Pfister, E.; Dinardo, N.; Mondo, E.; Borel, F.; Conroy, F.; Fraser, C.; Gernoux, G.; Han, X.; Hu, D.; Johnson, E.; et al. Artificial miRNAs reduce human mutant Huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum. Gene Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Guggino, W.B.; Benson, J.; Seagrave, J.; Yan, Z.; Engelhardt, J.; Gao, G.; Conlon, T.J.; Cebotaru, L. A preclinical study in Rhesus macaques for cystic fibrosis to assess gene transfer and transduction by AAV1 and AAV5 with a dual-luciferase reporter system. Hum. Gene Ther. Clin. Dev. 2017, 28, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Binalsheikh, I.M.; Leach, S.B.; Domeier, T.L.; Duan, D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin. Orphan Drugs 2016, 4, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Kodippili, K.; Hakim, C.H.; Pan, X.; Yang, H.T.; Yue, Y.; Zhang, Y.; Shin, J.H.; Yang, N.N.; Duan, D. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb Mini-Dystrophin gene in the canine model. Hum. Gene Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Greig, J.A.; Wang, Q.; Reicherter, A.L.; Chen, S.J.; Hanlon, A.L.; Tipper, C.H.; Clark, K.R.; Wadsworth, S.; Wang, L.; Wilson, J.M. Characterization of adeno-associated viral vector-mediated human Factor VIII gene therapy in hemophilia A mice. Hum. Gene Ther. 2017, 28, 292–402. [Google Scholar] [CrossRef] [PubMed]
- Thankur, V.; Gonzalez, M.; Pennington, K.; Chattopadhyay, M. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals. Mol. Cell. Neurosci. 2016, 72, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, M. Targeted delivery of growth factors by HSV-mediated gene transfer for peripheral neuropathy. Curr. Gene Ther. 2013, 13, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.R.; Naoe, Y.; Bustos-Villalobos, I.; Ichinose, T.; Tanaka, M.; Zhiwen, W.; Mukoyama, N.; Morimoto, T.; Miyajima, N.; Hitoki, H.; et al. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front. Oncol. 2017, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Peng, T.; Li, J.; Wang, Y.; Zhang, W.; Zhang, P.; Peng, S.; Du, T.; Li, Y.; Yan, Q.; et al. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Ther. 2016, 23, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, H.B. Gene therapy for severe combined immunodeficiences. Expert Opin. Biol. Ther. 2005, 5, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- De Andrade Pereira, B.; Fraefel, C. Novel immunotherapeutic approaches in targeting dendritic cells with virus vectors. Discov. Med. 2015, 20, 111–119. [Google Scholar] [PubMed]
- Kusabuka, H.; Fujiwara, K.; Tokunaga, Y.; Hirobe, S.; Nakagawa, S.; Okada, N. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy. Biochem. Biophys. Res. Comm. 2016, 473, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Parab, S.; Burnett, R.; Diago, O.; Ostertag, D.; Hofman, F.M.; Espinoza, F.L.; Martin, B.; Ibañez, C.E.; Kasahara, N.; et al. Intravenous administration of retroviral replicating vector, Toca 511, demonstrates efficacy in orthotopic immune-competent mouse glioma model. Hum. Gene Ther. 2015, 26, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.; Scholz, S.; Schwäble, J.; Sadat, M.A.; Modlich, U.; Schultze-Strasser, S.; Diaz, M.; Chen-Wichmann, L.; Müller-Kuller, U.; Brendel, C.; et al. From bench to bedside: Preclinical evaluation of a self-activating gammaretroviral vector for the gene therapy of X-linked chronic granulomatous disease. Hum. Gene Ther. Clin. Dev. 2013, 24, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gomez, M.; Calabria, A.; Garcia-Bravo, M.; Benedicenti, F.; Kosinski, P.; López-Manzaneda, S.; Hill, C.; Del Mar Mañu-Pereira, M.; Martín, M.A.; Orman, I.; et al. Safe and efficient gene therapy of pyruvate kinase deficiency. Mol. Ther. 2016, 24, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Hutson, T.H.; Foster, E.; Moon, L.D.; Yanez-Munoz, R.J. Lentiviral vector-mediated RNA silencing in the central nervous system. Hum. Gene Ther. Methods 2014, 25, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Sapru, M.K.; Yates, J.W.; Hogan, S.; Jiang, L.; Halter, J.; Bohn, M.C. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp. Neurol. 2006, 198, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Horvath, L.; van Marion, I.; Tai, K.; Nielsen, T.T.; Lundberg, C. Knockdown of GAD87 protein levels normalizes neuronal activity in a rat model of Parkinson’s disease. J. Gene Med. 2011, 13, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Singer, O.; Marr, R.A.; Rockenstein, E.; Crews, L.; Coufal, N.G.; Gage, F.H.; Verma, I.M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer’s disease neuropathology in a transgenic model. Nat. Neurosci. 2005, 8, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita, D.; Hernandez, I.; Lopez-Tobon, A.; Fedorov, D.; Obara, B.; Manjunath, B.S.; Boudreau, R.L.; Davidson, B.; Laferla, F.; Gallego-Gómez, J.C.; et al. Silencing of CDK5 reduces neurofibrillary tangles in Alzheimer’s mice. J. Neurosci. 2010, 30, 13966–13976. [Google Scholar] [CrossRef] [PubMed]
- Ringpis, G.E.; Shimizu, S.; Arokium, H.; Camba-Colón, J.; Carroll, M.V.; Cortado, R.; Xie, Y.; Kim, P.Y.; Sahakyan, A.; Lowe, E.L.; et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS ONE 2012, 7, e53492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.W.; Haworth, K.G.; Burke, B.P.; Polacino, P.; Norman, K.K.; Adair, J.E.; Hu, S.L.; Bartlett, J.S.; Symonds, G.P.; Kiem, H.P. Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Mol. Ther. Methods Clin. Dev. 2016, 3, 16007. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Oncolytic alphaviruses in cancer Immunotherapy. Vaccines 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Määttä, A.M.; Mäkinen, K.; Ketola, A.; Liimatainen, T.; Yongabi, F.N.; Vähä-Koskela, M.; Pirinen, R.; Rautsi, O.; Pellinen, R.; Hinkkanen, A.; et al. Replication competent Semliki Forest virus prolongs survival in experimental lung cancer. Int. J. Cancer 2008, 123, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Roche, F.P.; Sheahan, B.J.; O’Mara, S.M.; Atkins, G.J. Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol. Appl. Neurobiol. 2010, 36, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Ylosmaki, E.; Martikainen, M.; Hinkkanen, A.; Saksela, K. Attenuation of Semliki Forest virus neurovirulence by microRNA-mediated detargeting. J. Virol 2013, 87, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, H.; Liang, J.; Li, K.; Zhu, W.; Fu, L.; Wang, F.; Zheng, X.; Shi, H.; Wu, S.; et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc. Natl. Acad. Sci. USA 2014, 111, E4504–E4512. [Google Scholar] [CrossRef] [PubMed]
- Hoang-Le, D.; Smeenk, L.; Anraku, I.; Pijlman, G.P.; Wang, X.J.; de Vrij, J.; Liu, W.J.; Le, T.T.; Schroder, W.A.; Khromykh, A.A.; et al. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Ther. 2009, 16, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.K.; Cooper, D.; Egan, M.A.; Hendry, R.M.; Parks, C.L.; Udem, S.A. Recombinant vesicular stomatitis virus as an HIV-1 vaccine vector. Springer Semin. Immunopathol. 2006, 28, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Muik, A.; Stubbert, L.J.; Jahedi, R.Z.; Geiβ, Y.; Kimpel, J.; Dold, C.; Tober, R.; Volk, A.; Klein, S.; Dietrich, U.; et al. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res. 2014, 74, 3567–3578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Steele, M.B.; Jenks, N.; Grell, J.; Suksanpaisan, L.; Naik, S.; Federspiel, M.J.; Lacy, M.Q.; Russell, S.J.; Peng, K.W. Safety studies in tumor and non-tumor-bearing mice in support of clinical trials using oncolytic VSV-IFNβ-NIS. Hum. Gene Ther. Clin. Dev. 2016, 27, 111–122. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.K.; Naik, S.; Galvon, G.D.; Jenks, N.; Steele, M.; Peng, K.W.; Federspiel, M.J.; Donnell, R.; Russell, S.J. Safety studies on intravenous administration of onclolytic recombinant vesicular stomatitis virus in purpose-bread beagle dogs. Hum. Gene Ther. Clin. Dev. 2013, 24, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Hastie, E.; Grdzelishvili, V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol. 2012, 93, 2529–2545. [Google Scholar] [CrossRef] [PubMed]
- Reddi, H.V.; Madde, P.; McDonough, S.J.; Trujillo, M.A.; Morris, J.C., 3rd; Myers, R.M.; Peng, K.W.; Russell, S.J.; McIver, B.; Eberhardt, N.L. Preclinical efficacy of the oncolytic measles virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: A novel therapeutic agent allowing noninvasive imaging and radioiodine therapy. Cancer Gene Ther. 2012, 19, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Bossow, S.; Lampe, J.; Zimmermann, M.; Taran, F.A.; Wallwiener, D.; Fehm, T.; Bitzer, M.; Lauer, U.M. Enhanced killing of ovarian carcinoma using oncolytic measles vaccine virus armed with a yeast cytosine deaminase and uracil phosphoribosyltransferase. Gynecol. Oncol. 2013, 130, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J.; Bossow, S.; Weiland, T.; Venturelli, S.; Berger, A.; Bossow, S.; Berchtold, S.; Schulze-Osthoff, K.; Lauer, U.M.; Bitzer, M. An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther. 2013, 20, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Lampe, J.; Bossow, S.; Zimmermann, M.; Neubert, W.; Bitzer, M.; Lauer, U.M. A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Hum. Gene Ther. 2013, 24, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Bai, F.; Sun, T.; Tian, H.; Yu, D.; Yin, J.; Li, S.; Li, T.; Cao, H.; Yu, Q.; et al. Recombinant Newcastle disease virus expressing IL15 demonstrates promising antitumor efficiency in melanoma model. Technol. Cancer Res. Treat. 2015, 14, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Zhang, P.; Fu, F.; Zhang, X.; Liu, Y.; Hu, L.; Li, X. Oncolytic therapy of a recombinant Newcastle disease virus D90 strain for lung cancer. Virol. J. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.L.; Yu, Y.H.; Tian, H.; Ren, G.P.; Wang, H.; Zhou, B.; Han, X.H.; Yu, Q.Z.; Li, D.S. Genetically engineered Newcastle disease virus expressing interleukin-12 and TNF-related and apoptosis-inducing ligand for cancer therapy. Cancer Ther. Biol. 2014, 15, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; He, J.; Geng, J.; An, Y.; Ye, X.; Yan, S.; Yu, Q.; Yin, J.; Zhang, Z.; Li, D. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. Eur. J. Pharmacol. 2017, 802, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, H.; Shim, S.H.; Kim, C.; Song, M.; Kim, Y.H.; Jung, Y.W.; Nam, J.H. Coxsackievirus B3 used as a gene therapy vector to express functional FGF2. Gene Ther. 2012, 19, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Shafren, D.R.; Au, G.G.; Nguyen, T.; Newcombe, N.G.; Haley, E.S.; Beagley, L.; Johansson, E.S.; Hersey, P.; Barry, R.D. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin. Cancer Res. 2004, 10, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Skelding, K.A.; Barry, R.D.; Shafren, D.R. Systemic targeting of metastatic human breast xenografts by Coxsackievirus A21. Breast Cancer Res. Treat. 2009, 113, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Skelding, K.A.; Barry, R.D.; Shafren, D.R. Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Investig. New Drugs 2012, 30, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Berry, L.J.; Au, G.G.; Barry, R.D.; Shafren, D.R. Potent oncolytic activity of human enteroviruses against human prostate cancer. Prostate 2008, 68, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Al Yaghchi, C.; Zhang, Z.; Alusi, G.; Lemoine, N.R.; Wang, Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015, 7, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Madan, R.A.; Arlen, P.M.; Gullye, J.L. PANVAC-VF: Poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin. Biol. Ther. 2007, 7, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Ady, J.W.; Johnsen, C.; Mojica, K.; Heffner, J.; Love, D.; Pugalenthi, A.; Belin, J.L.; Chen, G.N.; Yu, A.Y.; Szalay, A.A.; et al. Oncolytic gene therapy with recombinant vaccinia virus strain GLV-2b372 efficiently kills hepatocellular carcinoma. Surgery 2015, 158, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, D.C.; Kyula, J.N.; Rosenfelder, N.; Chao-Chu, J.; Kramer-Marek, G.; Khan, A.A.; Roulstone, V.; McLaughlin, M.; Melcher, A.A.; Vile, R.G.; et al. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther. 2016, 23, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Potts, K.G.; Irwin, C.R.; Favis, N.A.; Pink, D.B.; Vincent, M.K.; Lewis, D.J.; Moore, B.R.; Hitt, M.M.; David, H.; Evans, H.D.; et al. Deletion of F4L (ribonucleotide recductase) in vaccinia virus produces a selective oncolytic virus and promotes anti-tumor immunity with superior safety in bladder cancer models. EMBO Mol. Med. 2017, 9, 638–654. [Google Scholar] [CrossRef] [PubMed]
- Ricordel, M.; Foloppe, J.; Pichon, C.; Sfrontato, N.; Antoine, D.; Tosch, C.; Cochin, S.; Cordier, P.; Quemeneur, E.; Camus-Bouclainville, C.; et al. Cowpox virus: A new and armed oncolytic poxvirus. Mol. Ther. Oncolytics 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, R.; Salazar, R.; Duran, I.; Osman-Garcia, I.; Paz-Ares, L.; Bozada, M.J.; Boni, V.; Blanc, C.; Seymour, L.; Beadle, J.; et al. Phase 1 study of intravenous administration of the chimeric enadenotucirev in patients undergoing primary tumor resection. J. Immunother. Cancer 2017, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.C.; Monahan, P.E. Gene therapy for hemophilia. BioDrugs 2017. [Google Scholar] [CrossRef]
- Spencer, H.T.; Riley, B.E.; Doering, C.B. State of the art: Gene therapy of haemophilia. Haemophilia 2016, 22 (Suppl. 5), 66–71. [Google Scholar] [CrossRef] [PubMed]
- Dodd, M.; Marquez-Curtis, L.; Janowska-Wieczorek, A.; Hortelano, G. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J. Gene Med. 2014, 16, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Landolfi, J.; Hogan, D.J.; Bloomfield, S.; Carter, B.; Chen, C.C.; Elder, J.B.; Kalkanis, S.N.; Kesari, S.; Lai, A.; et al. Phase I trial of vocimagine amiroretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl. Med. 2016, 8, 341ra75. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/ct2/show/NCT02414165/ (accessed on 14 May 2018).
- Downs-Canner, S.; Guo, Z.S.; Ravindranathan, R.; Breitbach, C.J.; O'Malley, M.E.; Jones, H.L.; Moon, A.; McCart, J.A.; Shuai, Y.; Zeh, H.J.; et al. Phase I study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol. Ther. 2016, 24, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Petrulio, C.A.; Kaufman, H.L. Development of the PANVAC-VF vaccine for pancreatic cancer. Expert. Rev. Vaccines 2006, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Therion Reports Results of Phase 3 panvac-vf Trial and Announces Plans for Company Sale. PR Newswire 28 June. Available online: www.prnewswire.com (accessed on 27 April 2018).
- Riedmann, E.M. Human vaccines & immunotherapeutics: News. Hum. Vaccin. Immunother. 2014, 10, 1773–1777. [Google Scholar]
- Patel, D.M.; Foreman, P.M.; Nabors, L.B.; Riley, K.O.; Gillespie, G.Y.; Markert, J.M. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astocytoma or gliosarcoma. Hum. Gene Ther. Clin. Dev. 2016, 27, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Markert, J.M.; Liechty, P.G.; Wang, W.; Gaston, S.; Braz, E.; Karrasch, M.; Nabors, B.L.; Markiewicz, M.; Lakeman, D.A.; Palmer, A.C.; et al. Phase 1b trial of mutant herpes simplex virus G207 inoculated pre- and post-tumor resection for recurrent GBM. Mol. Ther. 2009, 17, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Markert, J.M.; Razdan, S.N.; Kuo, H.C.; Cantor, A.; Knoll, A.; Karrasch, M.; Nabors, L.B.; Markiewicz, M.; Agee, B.S.; Coleman, J.M.; et al. A phase I trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol. Ther. 2014, 22, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.M.; Johnston, J.M.; Reddy, A.T.; Fiveash, J.; Madan-Swain, A.; Kachurak, K.; Bag, A.K.; Gillespie, G.Y.; Markert, J.M.; Friedman, G.K. Rationale and design of a phase I clinical trial to evaluate HSV G207 alone or with a single radiation dose in children with progressive or recurrent malignant supratentorial brain tumors. Hum. Gene Ther. Clin. Dev. 2017, 28, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.F.; Kehoe, M.; Durso, R.; Fernandez, C.; Olson, W.; Gao, J.P.; Israel, R.; Scher, H.I.; Morris, S. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2013, 31, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Biology and applications of alphaviruses in gene therapy. Gene Ther. 2005, 12, S92–S97. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, S.; Zakay-Rones, Z.; Panet, A. Therapeutic potential of oncolytic Newcastle disease virus: A critical review. Oncolytic Virother. 2015, 4, 49–62. [Google Scholar] [PubMed]
- Schirrmacher, V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: Improvement of patient survival based on improved antitumor immune memory. Cancer Immunol. Immunother. 2005, 54, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Voit, C.; Kron, M.; Schwurzer-Voit, M.; Sterry, W. Intradermal injection of Newcastle disease virus-modified autologous melanoma cell lysate and interleukin-2 for adjuvant treatment of melanoma patients with resectable stage III disease. J. Dtsch. Dermatol. Ges. 2003, 1, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Pecora, A.L.; Rizvi, N.; Cohen, G.I.; Meropol, N.J.; Sterman, D.; Marshall, J.L.; Goldberg, S.; Gross, P.; O’Neil, J.D.; Groene, W.S.; et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol. 2002, 20, 2251–2266. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wang, H.; Sun, T.M.; Yao, W.Q.; Chen, L.L.; Jin, Y.; Li, C.L.; Meng, F.J. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J. Gastroenterol. 2003, 9, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Hütter, G.; Bodor, J.; Ledger, S.; Boyd, M.; Millington, M.; Tsie, M.; Symonds, G. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 2015, 7, 4186–4203. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.F.; An, D.S.; Chen, I.S.; Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 2003, 100, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://fdaaa.trialstracker.net/trial/ NCT01734850/ (accessed on 14 May 2017).
- Pandha, H.; Harrington, K.; Ralph, C.; Melcher, A.; Grose, M.; Shafren, D. Phase I/II storm study: Intravenous delivery of a novel oncolytic immunotherapy agent, Coxsackievirus A21, in advanced cancer patients. J. Immunother. Cancer 2015, 3 (Suppl. 2), P341. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Curti, B.D.; Hallmeyer, S.; Feng, Z.; Paustian, C.; Bifulco, C.; Fox, B.; Grose, M.; Shafren, D. Phase II calm extension study: Coxsackievirus A21 delivered intratumorally to patients with advanced melanoma induces immune-cell infiltration in the tumor microenvironment. J. Immunother. Cancer 2015, 3 (Suppl. 2), P343. [Google Scholar] [CrossRef]
- Silk, A.W.; Kaufman, H.; Gabriel, N.; Mehnert, J.; Bryan, J.; Norrell, J.; Medina, D.; Bommareddy, P.; Shafren, D.; Grose, M.; et al. Abstract CT026: Phase 1b study of intratumoral coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: Interim results of the CAPRA clinical trial. Cancer Res. 2017, 77 (Suppl. 13), CT026. [Google Scholar] [CrossRef]
- Alton, E.W.; Beekman, J.M.; Boyd, A.C.; Brand, J.; Carlon, M.S.; Connolly, M.M.; Chan, M.; Conlon, S.; Davidson, H.E.; Davies, J.C.; et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 2017, 72, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.K.; Pikkarainen, J.T.; Wirth, T.; Ylä-Herttuala, S. Gene Therapy: The First Approved Gene-Based Medicines, Molecular Mechanisms and Clinical Indications. Curr. Mol. Pharmacol. 2008, 1, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-C.; Kim, D. Gene therapy progress and prospects cancer: Oncolytic viruses. Gene Ther. 2008, 15, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Li, L.; Li, D.; Liu, J.; Li, X.; Li, W.; Xu, X.; Zhang, M.J.; Chandler, L.A.; Lin, H.; et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 2018, 29, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Kim, D.W.; DeRaffele, G.; Mitcham, J.; Coffin, R.S.; Kim-Schulze, S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 2010, 17, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://european-biotechnology.com/up-to-date/latest-news/news/uniqure-withdraws-eur1m-drug-glybera-from-market.html (accessed on 21 April 2017).
- Heo, J.; Reid, T.; Ruo, L.; Breitbach, C.J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H.Y.; Chung, H.C.; Kim, C.W.; et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 2013, 19, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, N.; Ge, Y.; Ennist, D.L.; Zhu, M.; Mina, M.; Ganesh, S.; Reddy, P.S.; Yu, D.C. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin. Cancer Res. 2006, 12, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Gollamudi, R.; Ghalib, M.H.; Desai, K.K.; Chaudhary, I.; Wong, B.; Einstein, M.; Coffey, M.; Gill, G.M.; Mettinger, K.; Mariadason, J.M.; et al. REO-001: Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients in advanced solid tumors. Investig. New Drugs 2010, 28, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Ino, Y.; Todo, T. Clinical development of a third-generation HSV-1 (G47Δ) for malignant glioma. Gene Ther. Regul. 2010, 5, 101–111. [Google Scholar] [CrossRef]
- Beitelshees, M.; Hill, A.; Rostami, P.; Jones, C.H.; Pfefifer, P.A. Pressing diseases that represent promising targets for gene therapy. Discov. Med. 2017, 24, 313–322. [Google Scholar] [PubMed]
- Zhou, S.; Fatima, S.; Ma, Z.; Wang, Y.D.; Lu, T.; Janke, L.J.; Du, Y.; Sorrentino, B.P. Evaluating the safety of retroviral vectors based on insertional oncogene activation and blocked differentiation in cultured thymocytes. Mol. Ther. 2016, 24, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Gandara, C.; Affleck, V.; Stoll, E.A. Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to Good Manufacturing Practice. Hum. Gene Ther. Methods 2018, 29, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Srinivasakumar, N. HIV-1 vector systems. Somat. Cell Mol. Genet. 2001, 26, 51–81. [Google Scholar] [CrossRef] [PubMed]
- Suwanmanee, T.; Ferris, M.T.; Hu, P.; Gui, T.; Montgomery, S.A.; Pardo-Manuel de Villena, F.; Kafri, T. Toward personalized gene therapy: Characterizing the host genetic control of lentiviral-vector-mediated hepatic gene delivery. Mol. Ther. Methods Clin. Dev. 2017, 5, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Yoneda, A.; Matsuzaki, J.; Miliotto, A.; Ryan, C.; Koya, R.C.; Odunsi, K. Rapid construction of antitumor T-cell receptor vectors from frozen tumors for engineered T-cell therapy. Cancer Immunol. Res. 2018, 6, 594–604. [Google Scholar] [CrossRef] [PubMed]
Virus | Genome | Insert Capacity | Features | Reference |
---|---|---|---|---|
Adenoviruses | dsDNA | <7.5 kb | broad host range | [4–6] |
Ad5 | transient expression | |||
strong immunogenicity | ||||
AAV | ssDNA | <4 kb | relatively broad host range | [7–10] |
AAV2, 3, 5, 6, 8, 9 | slow expression onset | |||
chromosomal integration | ||||
immune response | ||||
Herpes simplex | dsDNA | >30 kb | broad host range | [12,13] |
HSV1, HSV | latent infection, long-term expression | |||
low toxicity, large insert capacity | ||||
Retroviruses | ssRNA | 8 kb | transduces only dividing cells | [14,15] |
MMSV | long-term expression | |||
MSCV | random integration | |||
Lentiviruses | ssRNA | 8 kb | broad host range | [16,17] |
HIV-1, HIV-2 | low cytotoxicity, integration | |||
long-term expression | ||||
Alphaviruses | ssRNA | 8 kb | broad host range | [54] |
SFV, SIN, | extreme transient expression | |||
VEE, M1 | low immunogenicity | |||
neuron- and glial-specific mutants | ||||
Flaviviruses | 6 kb | relatively broad host range | ||
Kunjin, West Nile, | ssRNA | transient expression | [18] | |
Dengue virus | packaging system | |||
Rhabdoviruses | ssRNA | 6 kb | relatively broad host range | [18] |
Rabies, VSV | high transient expression | |||
low immunogenicity | ||||
Measles virus | ssRNA | 6 kb | transient expression | [18] |
MV-Edm | oncolytic strains | |||
Newcastle disease | ssRNA | 6 kb | replication in tumor cells | [20,21] |
Virus | improved oncolytic vectors | |||
Poxviruses | dsDNA | >30 kb | broad host range, large inserts | [24–26] |
VV | replication-competent vectors | |||
Picornaviruses | ssRNA | 6 kb | oncolytic strains | [22,23] |
Coxsackievirus |
Virus Vector | Disease | Target | Response | Reference |
---|---|---|---|---|
Adenovirus | ||||
Ad-SYE | pancreatic CA | SYE | targets pancreatic tumors | [28] |
AdSur-SYE | neuroendocrine CA | SYE-survivin | targets PNETs providing complete regression | [29] |
Ad5/3-MDA7/IL-24 | breast CA | MDA7/IL-24 | selective tumor death, bystander effect, microbubble encapsulation | [30] |
Ad-SB | cancer | Hybrid Ad | chromosomal integration | [31] |
Ad-CRISPR | glioma | CRSIPR | T cell activation | [32] |
oncolytic Ad | glioma | + immunomodulatory proteins | modified tumor microenvironment | [32] |
AAV | ||||
AAV-MeCP2 | RTT | MeCP2 | dose-related toxicity, extended survival of mice | [34] |
AAV1, AAV5 | HD | HTT miRNA | gene silencing of HTT in transgenics | [35] |
Dual AAV9 | CT | luciferase | reporter expression in macaque lung | [36] |
DMD | mini-dystrophin | mini-dystrophin expression, | [38] | |
AAV8, AAV9, | hemophilia | FVIII | reduced muscle degeneration | |
AAVrh10, AAVhu37 | anti-FVIII antibodies | [39] | ||
HSV | ||||
HSV1, HSV2 | PDN | IL-10 | blocked nociceptive and stress responses | [40] |
SN | growth factors | prevention of SN | [41] | |
HSV-1 HF10 | cancer | HF10 | tumor regression, improved survival | [42] |
Oncolytic HSV-2 | HSV-2 | tumor growth inhibition | [43] | |
Retroviruses | ||||
RRV/ Toca 511 | glioma | CD | combination therapy with 5-FC prolonged survival in mice | [47] |
GRV | X-CGD | SINfes.gp91s | protection against A. fumigatus | [48] |
Lentiviruses | ||||
HIV-1, HIV-2 | PKD | PKLR | corrected hematological phenotype | [49] |
PD | RNAi | down-regulated α-synuclein | [51] | |
GAD67 | normalized neuronal activity | [52] | ||
AD | RNAi | reduced neurodegeneration | [53] | |
siRNA | reduced tau phosphorylation | [54] | ||
HIV | shRNA | inhibition of HIV infection | [55] | |
SHIV | Cal-1 | safe integration | [56] | |
Alphaviruses | ||||
SFV | lung CA | EGFP | prolonged survival | [58] |
glioma | IL-12 | tumor regression, | [59] | |
miRNAs | prolonged survival | [60] | ||
M1 | liver CA | onolytic M1 | tumor targeting, prolonged survival tumor growth inhibition | [61] |
Flaviviruses | ||||
Kunjin virus | colon CA | GM-CSF | tumor regression | [62] |
Rhabdoviruses | ||||
VSV | AIDS | HIV-1 Gag/Env | protection against HIV-1 challenges | [63] |
Cancer | IFNβ-NIS | tumor regression | [65,66] | |
MUC1 | tumor growth inhibition | [67] | ||
Measles virus | ||||
MV-Edm | ATC | MV-NIS | enhanced tumor killing | [68] |
ovarian CA | MV-SCD | lysis of primary tumors | [70] | |
HCC | MV-SCD | apoptosis-like cell death | [70] | |
CC | MV-SCD | prolonged survival | [71] | |
NDV | ||||
NDV | melanoma | IL15 | suppression of tumor growth | [72] |
NDV90 | lung CA | GFP | tumor-selective replication | [73] |
NDV | HCC | IL2-TRAIL | prolonged survival | [74] |
NDV Anhinga | HCC | TRAIL | tumor suppression | [75] |
Picornaviruses | ||||
Coxsackievirus | ||||
CVB3 | IN | FGF2 | improved blood flow | [76] |
CAV21 | melanoma | ICAM1, DAF | tumor regression metastases | [77] |
CAV21 | breast CA | ICAM1, DAF | improved tumor regression | [78] |
CAV21 | breast CA | ICAM1,DAF+DH | tumor regression, dose dependence | [79] |
CVA21, EV1 | prostate CA | DAFv | superior tumor regression | [80] |
Poxviruses | ||||
PANVAC | pancreatic CA | MUC-1, CEA | induced CTL responses | [82] |
VV | HCC | GLV-2b372 | reduced tumor volume | [83] |
VV-GLV-1h153 | prostate CA | NIS + radiotherapy | restricted tumor growth, improved survival rate | [84] |
VV | bladder CA | F4L-mutated | tumor regression, complete ablation | [85] |
CPXV | glioblastoma | FCU1 | tumor growth inhibition | [86] |
CPXV | colon CA | FCU1 | tumor growth inhibition | [86] |
Disease | Viral Vector | Response | Reference |
---|---|---|---|
Hemophilia A | AAV-FVIII/FIX | Cure of hemophilia | [88,89] |
Hemophilia B | Lenti-FVIII | Potential cure | [87] |
Lenti-FIX | Life-long production of FVIII | [90] | |
Cancer | Enadenotucirev | Good safety, no serious adverse events in phase I | [87] |
HSV HF10 | Good safety, antitumor activity | [42] | |
HSV HF10 | Combination therapy anti-CTLA-4 | [42] | |
HGG | Toca 511 | Improved survival | [91] |
Toca 511/FC | Phase II/III trial in progress | [92] | |
Glioblastoma | HSV G207 | Antitumor activity in Phase I | [97] |
HSV G207 | Design of phase I trial for children with glioblastoma | [98] | |
CGD | Gamma RV | Resolution of infections, but malignant transformation | [48] |
ATC | MV-NIS | Targeting iodine-resistant ATC | [66] |
Colorectal CA | Oncolytic VV | Induction of immune response | [93] |
NDV | Prolonged survival of patients in phase II study | [107] | |
Kidney CA | LipoSFV-IL12 | Transient IL-12, repeated injections | [102] |
Pancreatic CA | PANVAC-VF | Failure in phase III, encouraging results in new phase I trial | [94,95] |
Prostate CA | NDV-TAA | Improved survival in phase II | [104] |
VEE-PSMA | Neutralizing antibodies in phase I | [101] | |
Melanoma | NDV | Phase II/III failed to show superiority to control | [105] |
CVA21 | Anti-tumor activity in melanoma patients | [111,112] | |
CVA21 + PLMab | Overall response rate 60%, stable disease in 27% of patients | [113] | |
LipoSFV-IL12 | Transient IL-12, repeated injections | [102] | |
Solid tumors | NDV PV701 | Progression-free survival | [106] |
CF | Lenti-hCEF-CT | Expression, toxicity and integration profiles support for clinical trials | [114] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 42. https://doi.org/10.3390/diseases6020042
Lundstrom K. Viral Vectors in Gene Therapy. Diseases. 2018; 6(2):42. https://doi.org/10.3390/diseases6020042
Chicago/Turabian StyleLundstrom, Kenneth. 2018. "Viral Vectors in Gene Therapy" Diseases 6, no. 2: 42. https://doi.org/10.3390/diseases6020042
APA StyleLundstrom, K. (2018). Viral Vectors in Gene Therapy. Diseases, 6(2), 42. https://doi.org/10.3390/diseases6020042