MeCP2-Related Diseases and Animal Models
Abstract
:1. Introduction
2. The Role of MeCP2 in Neurological Disorders
2.1. Rett Syndrome
2.2. MECP2 Duplication Disorder
2.3. Angelman Syndrome
2.4. X-linked Mental Retardation
2.5. Severe Neonatal Encephalopathy
2.6. Autism
2.7. Fetal Alcohol Spectrum Disorders
2.8. Huntington’s Disease
3. Non-Neurological Disorders Associated with MeCP2
3.1. Cancer
3.2. Systemic Lupus Erythematosus
3.3. Rheumatoid Arthritis
3.4. Hirschsprung's Disease
Disease | Gender mostly affected | References |
---|---|---|
Rett Syndrome | Females (also males with kleinfelter syndrome 47 XXY, or somatic mosaicism) | [15,62,63,148] |
MECP2 duplication disorder | Males | [81,82,83] |
Angelman Syndrome | Females | [91,93] |
X-linked mental retardation | Males | [86,94,95] |
Severe neonatal encephalopathy | Males | [95,97,98] |
Autism | Both | [100,101,102] |
Fetal alcohol spectrum disorders | Both (Studies from animal models only) | [109,110,113] |
Huntington’s disease | Both | [117] |
Early-onset schizophrenia | Both | [106] |
Cancers | Both | [119,120,121,122,123,124,125,126,127,128,149] |
Systemic lupus erythematosus | Females | [56,133,134] |
Rheumatoid arthritis | Females | [140,141] |
Hirschsprung’s disease | Males | [147] |
4. Animal Models of MeCP2 Dysfunction
4.1. Mecp2 Null Mouse Models
4.2. Mecp2 Mutant Mice
4.3. Mecp2 Conditional-Mutant Mice
4.4. Mice Overexpressing MECP2
4.5. Mouse Models Carrying Rett Syndrome-Associated Mutations
5. Closing Remarks
Animal models | Description | Phenotype | References |
---|---|---|---|
Mouse | |||
Mecp2 null mouse models: Mecp2tm1.1bird Mecp2tm1.Tam | Exon 3 and 4 deletion. MeCP2 expression and function are abolished | Unusual gait, hindlimb clasping, seizures, irregular breathing | [150,151] |
Mecp2lox−Stop/y or Mecp2tm2.bird | Gene silencing by Cre recombinase insertion into intron 2. No protein is detected (behaves as a null allele) | Phenotypes similar to the null mice with abnormal behavior, RTT-like phenotypes and breathing irregularities. | [153] |
Mecp2 mutant mice: | |||
Mecp2tm1.1jae | Exon 3 deletion. MeCP2 expression and function are abolished. | Neurological phenotype similar to Mecp2 null mice, however lifespan is longer. | [155] |
Mecp2308 | Introduction of a premature STOP codon in exon 4. Truncated MeCP2 protein with residual unknown function | Milder neurological phenotype compared to Mecp2 null mice | [156] |
Mecp2 conditional-mutant mice: | |||
Nestin-cre knockout | Brain-specific deletion | Similar to Mecp2 null mice except for breathing phenotype | [150,155] |
Sim 1-cre knockout | Selective deletion in neurons of hypothalamus and amygdala | Abnormal stress response, stranger aggression | [157] |
TH-cre knockout | Selective deletion in dopaminergic and noradrenergic neurons. | Hypoactivity, reduced expression of tyrosine hydroxylase | [158,159] |
CamKII-cre knockout | Forebrain-specific deletion | Impaired motor co-ordination, anxiety | [171] |
Pet1-cre knockout | Selective deletion in serotonergic neurons | Increased aggression, hyperactivity | [159] |
Viaat-cre knockout | Selective deletion in GABAergic neurons | Reduced lifespan, self-mutilation | [169] |
Mice overexpressing MECP2 | |||
MeCP2Tg1 | MECP2 overexpression in all cells | Seizures, premature death, abnormal social behaviors, hypoactivity | [160] |
Tau-MECP2-rescue | MECP2 overexpression in neurons | Hypoactivity, impaired cognition | [81] |
Rett Syndrome mouse models: | |||
Mecp2R168X | Premature STOP codon at amino acid 168 | Hindlimb clasping, breathing irregularities | [161] |
Mecp2A140V | Missense mutation that produces mutant MeCP2 protein | Normal life span, reduced dendrite branching | [162] |
Mecp2T308A | Knock-in mutation that causes loss of interaction with NCoR complex | Motor abnormalities, hindlimb clasping | [172] |
Mecp2R306C | Knock-in mutation that causes loss of interaction with NCoR/SMRT | Impaired motor function, hindlimb clasping | [173] |
Mecp2T158A | Knock-in mutation that disrupts protein stability | Developmental regression, hypoactivity | [174] |
Mecp2-e1 | Point mutation of ATG in exon 1 to TTG | Forelimb stereotypy, hindlimb clasping, excessive grooming, and hypoactivity | [164] |
Mecp2S80A | Knock-in mouse model with abolished phosphorylation at S80. | Reduced locomotion similar to that of Mecp2 null mice and RTT patients | [165] |
Mecp2S421A;S424A | Double mutant mouse model which lacks phosphorylation at both S421A and S424A | Phenotypes opposite to Mecp2S80A mice (increased locomotion) | [165] |
Mecp2 Mouse models of phenotypic rescue | |||
Mecp2lox−Stop/y;cre−ER | Activation of Mecp2 gene in Mecp2l°x−St°p/y mouse model by cre-ER and Tamoxifen injections. | Rescued majority of RTT phenotypes including increased lifespan, delayed disease progression | [153] |
Mecp2+/−; CAGGS LSL Mecp2 | Conditional activation (rescue) of Mecp2 gene in brain using synthetic CAGGS promoter | Partial rescue of RTT phenotypes, including delayed disease progression, reduced lethality and improved behaviors | [154] |
Rat | |||
Mecp2-sh-1 | Viral mediated RNAi-induced downregulation of Mecp2 | Transient neurobehavioral abnormalities, reduced Bdnf expression in hippocampus | [166] |
Zebrafish | |||
Mecp2Q63 *. | Nonsense mutation and a truncation of MeCP2 at position 63 | Altered motor behaviors, however viable and fertile | [168] |
Drosophila | |||
GMR-Gal4:UAS-MeCP2 R106W/+. | Overexpression of mutant MeCP2 protein | Locomotar dysfunction, external eye disruption | [167] |
GMR-Gal4:UAS-MeCP2 R294X/+. |
List of Abbreviations
AS | Angelman Syndrome |
ASD | Autism Spectrum Disorders |
ATRX | Alpha Thalassemia/Mental Retardation Syndrome X-linked |
BDNF | Brain Derived Neurotrophic Factor |
CDKL5 | Cyclin-Dependent Kinase-Like 5 |
CTD | C-terminal Domain |
DNMT | DNA Methyl Transferase |
FASD | Fetal Alcohol Spectrum Disorders |
FOXG1 | Forkhead Box Protein G1 |
HD | Huntington's Disease |
HSCR | Hirschsprung’s Disease |
HTT | Huntingtin Gene |
Htt | Huntingtin Protein |
MBD | Methyl Binding Domain |
MeCP2 | Methyl CpG Binding Protein |
MECP2 | Human MECP2 Gene |
Mecp2 | Mouse Mecp2 Gene |
miRNA | microRNA |
RA | Rheumatoid Arthritis |
RTT | Rett Syndrome |
SLE | Systemic Lupus Erythematosus |
TRD | Transcription Repression Domain |
XCI | X Chromosome Inactivation |
XLMR | X-linked Mental Retardation |
5mC | 5-methylcytosine |
5hmC | 5-hyrdoxymethylcytosine |
Acknowledgements
Conflicts of Interest
References
- Lewis, J.D.; Meehan, R.R.; Henzel, W.J.; Maurer-Fogy, I.; Jeppesen, P.; Klein, F.; Bird, A. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992, 69, 905–914. [Google Scholar] [CrossRef]
- Reichwald, K.; Thiesen, J.; Wiehe, T.; Weitzel, J.; Poustka, W.A.; Rosenthal, A.; Platzer, M.; Stratling, W.H.; Kioschis, P. Comparative sequence analysis of the mecp2-locus in human and mouse reveals new transcribed regions. Mamm. Genome 2000, 11, 182–190. [Google Scholar] [CrossRef]
- Liu, J.; Francke, U. Identification of cis-regulatory elements for mecp2 expression. Hum. Mol. Genet. 2006, 15, 1769–1782. [Google Scholar] [CrossRef]
- D'Esposito, M.; Quaderi, N.A.; Ciccodicola, A.; Bruni, P.; Esposito, T.; D'Urso, M.; Brown, S.D. Isolation, physical mapping, and northern analysis of the x-linked human gene encoding methyl cpg-binding protein, mecp2. Mamm. Genome 1996, 7, 533–535. [Google Scholar] [CrossRef]
- Singh, J.; Saxena, A.; Christodoulou, J.; Ravine, D. Mecp2 genomic structure and function: Insights from encode. Nucleic Acids Res. 2008, 36, 6035–6047. [Google Scholar] [CrossRef]
- Mnatzakanian, G.N.; Lohi, H.; Munteanu, I.; Alfred, S.E.; Yamada, T.; MacLeod, P.J.; Jones, J.R.; Scherer, S.W.; Schanen, N.C.; Friez, M.J.; et al. A previously unidentified mecp2 open reading frame defines a new protein isoform relevant to rett syndrome. Nat. Genet. 2004, 36, 339–341. [Google Scholar] [CrossRef]
- Kriaucionis, S.; Bird, A. The major form of mecp2 has a novel n-terminus generated by alternative splicing. Nucleic Acids Res. 2004, 32, 1818–1823. [Google Scholar] [CrossRef]
- Zachariah, R.M.; Olson, C.O.; Ezeonwuka, C.; Rastegar, M. Novel mecp2 isoform-specific antibody reveals the endogenous mecp2e1 expression in murine brain, primary neurons and astrocytes. PLoS One 2012, 7, e49763. [Google Scholar]
- Hite, K.C.; Adams, V.H.; Hansen, J.C. Recent advances in mecp2 structure and function. Biochem. Cell Biol. 2009, 87, 219–227. [Google Scholar] [CrossRef]
- Adams, V.H.; McBryant, S.J.; Wade, P.A.; Woodcock, C.L.; Hansen, J.C. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, mecp2. J. Biol. Chem. 2007, 282, 15057–15064. [Google Scholar]
- Klose, R.J.; Sarraf, S.A.; Schmiedeberg, L.; McDermott, S.M.; Stancheva, I.; Bird, A.P. DNA binding selectivity of mecp2 due to a requirement for a/t sequences adjacent to methyl-cpg. Mol. Cell 2005, 19, 667–678. [Google Scholar] [CrossRef]
- Hansen, J.C.; Ghosh, R.P.; Woodcock, C.L. Binding of the rett syndrome protein, mecp2, to methylated and unmethylated DNA and chromation. IUBMB life 2010, 62, 732–738. [Google Scholar] [CrossRef]
- Galvao, T.C.; Thomas, J.O. Structure-specific binding of mecp2 to four-way junction DNA through its methyl cpg-binding domain. Nucleic Acids Res. 2005, 33, 6603–6609. [Google Scholar] [CrossRef]
- Kokura, K.; Kaul, S.C.; Wadhwa, R.; Nomura, T.; Khan, M.M.; Shinagawa, T.; Yasukawa, T.; Colmenares, C.; Ishii, S. The ski protein family is required for mecp2-mediated transcriptional repression. J. Biol. Chem. 2001, 276, 34115–34121. [Google Scholar] [CrossRef]
- Zachariah, R.M.; Rastegar, M. Linking epigenetics to human disease and rett syndrome: The emerging novel and challenging concepts in mecp2 research. Neural Plast. 2012, 2012, 415825. [Google Scholar]
- Ghosh, R.P.; Nikitina, T.; Horowitz-Scherer, R.A.; Gierasch, L.M.; Uversky, V.N.; Hite, K.; Hansen, J.C.; Woodcock, C.L. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 2010, 49, 4395–4410. [Google Scholar] [CrossRef]
- Stuss, D.P.; Cheema, M.; Ng, M.K.; Martinez de Paz, A.; Williamson, B.; Missiaen, K.; Cosman, J.D.; McPhee, D.; Esteller, M.; Hendzel, M.; et al. Impaired in vivo binding of mecp2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Res. 2013, 41, 4888–4900. [Google Scholar] [CrossRef]
- Shahbazian, M.D.; Antalffy, B.; Armstrong, D.L.; Zoghbi, H.Y. Insight into rett syndrome: Mecp2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 2002, 11, 115–124. [Google Scholar]
- Jakovcevski, M.; Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 2012, 18, 1194–1204. [Google Scholar] [CrossRef]
- Liyanage, V.R.B.; Zachariah, R.M.; Delcuve, G.P.; Davie, J.R.; Rastegar, M. New developments in chromatin research: An epigenetic perspective. In New Developments in Chromatin Research; Simpson, N.M., Stewart, V.J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 29–58. [Google Scholar]
- Delcuve, G.P.; Rastegar, M.; Davie, J.R. Epigenetic control. J. Cell. Physiol. 2009, 219, 243–250. [Google Scholar] [CrossRef]
- Mellen, M.; Ayata, P.; Dewell, S.; Kriaucionis, S.; Heintz, N. Mecp2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system. Cell 2012, 151, 1417–1430. [Google Scholar] [CrossRef]
- Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-cpg-binding protein mecp2 involves a histone deacetylase complex. Nature 1998, 393, 386–389. [Google Scholar] [CrossRef]
- Jones, P.L.; Veenstra, G.J.; Wade, P.A.; Vermaak, D.; Kass, S.U.; Landsberger, N.; Strouboulis, J.; Wolffe, A.P. Methylated DNA and mecp2 recruit histone deacetylase to repress transcription. Nat. Genet. 1998, 19, 187–191. [Google Scholar]
- Jordan, C.; Li, H.H.; Kwan, H.C.; Francke, U. Cerebellar gene expression profiles of mouse models for rett syndrome reveal novel mecp2 targets. BMC Med. Genet. 2007, 8, 1–16. [Google Scholar]
- Chahrour, M.; Jung, S.Y.; Shaw, C.; Zhou, X.; Wong, S.T.; Qin, J.; Zoghbi, H.Y. Mecp2, a key contributor to neurological disease, activates and represses transcription. Science 2008, 320, 1224–1229. [Google Scholar] [CrossRef]
- Yasui, D.H.; Peddada, S.; Bieda, M.C.; Vallero, R.O.; Hogart, A.; Nagarajan, R.P.; Thatcher, K.N.; Farnham, P.J.; Lasalle, J.M. Integrated epigenomic analyses of neuronal mecp2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19416–19421. [Google Scholar] [CrossRef]
- Jeffery, L.; Nakielny, S. Components of the DNA methylation system of chromatin control are rna-binding proteins. J. Biol. Chem. 2004, 279, 49479–49487. [Google Scholar] [CrossRef]
- Young, J.I.; Hong, E.P.; Castle, J.C.; Crespo-Barreto, J.; Bowman, A.B.; Rose, M.F.; Kang, D.; Richman, R.; Johnson, J.M.; Berget, S.; et al. Regulation of rna splicing by the methylation-dependent transcriptional repressor methyl-cpg binding protein 2. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17551–17558. [Google Scholar] [CrossRef]
- Nikitina, T.; Shi, X.; Ghosh, R.P.; Horowitz-Scherer, R.A.; Hansen, J.C.; Woodcock, C.L. Multiple modes of interaction between the methylated DNA binding protein mecp2 and chromatin. Mol. Cell. Biol. 2007, 27, 864–877. [Google Scholar] [CrossRef]
- Skene, P.J.; Illingworth, R.S.; Webb, S.; Kerr, A.R.; James, K.D.; Turner, D.J.; Andrews, R.; Bird, A.P. Neuronal mecp2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 2010, 37, 457–468. [Google Scholar] [CrossRef]
- Kimura, H.; Shiota, K. Methyl-cpg-binding protein, mecp2, is a target molecule for maintenance DNA methyltransferase, dnmt 1. J. Biol. Chem. 2003, 278, 4806–4812. [Google Scholar] [CrossRef]
- Gos, M. Epigenetic mechanisms of gene expression regulation in neurological diseases. Acta Neurobiol. Exp. 2013, 73, 19–37. [Google Scholar]
- Olynik, B.M.; Rastegar, M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front. Genet. 2012, 3, (81). 1–16. [Google Scholar]
- Barber, B.A.; Rastegar, M. Epigenetic control of hox genes during neurogenesis, development, and disease. Ann. Anat. 2010, 192, 261–274. [Google Scholar] [CrossRef]
- Rastegar, M.; Delcuve, G.P.; Davie, J.R. Epigenetic analysis of pluripotent cells. In Human Stem Cell Technology and Biology: A Research Guide and Laboratory Manual. Perspectives in Human Stem Cell Technologies, 1st ed.; Wiley-Blackwell: New Jersey, NY, USA, 2011; pp. 273–288. [Google Scholar]
- Rastegar, M.; Kobrossy, L.; Kovacs, E.N.; Rambaldi, I.; Featherstone, M. Sequential histone modifications at hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol. Cell. Biol. 2004, 24, 8090–8103. [Google Scholar] [CrossRef]
- Nolte, C.; Rastegar, M.; Amores, A.; Bouchard, M.; Grote, D.; Maas, R.; Kovacs, E.N.; Postlethwait, J.; Rambaldi, I.; Rowan, S.; et al. Stereospecificity and pax6 function direct hoxd4 neural enhancer activity along the antero-posterior axis. Dev. Biol. 2006, 299, 582–593. [Google Scholar]
- Huang, H.; Rastegar, M.; Bodner, C.; Goh, S.L.; Rambaldi, I.; Featherstone, M. Meis c termini harbor transcriptional activation domains that respond to cell signaling. J. Biol. Chem. 2005, 280, 10119–10127. [Google Scholar]
- Kobrossy, L.; Rastegar, M.; Featherstone, M. Interplay between chromatin and trans-acting factors regulating the hoxd4 promoter during neural differentiation. J. Biol. Chem. 2006, 281, 25926–25939. [Google Scholar] [CrossRef]
- Barber, B.A.; Liyanage, V.R.; Zachariah, R.M.; Olson, C.O.; Bailey, M.A.; Rastegar, M. Dynamic expression of meis1 homeoprotein in e14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann. Anat. 2013, 195, 431–440. [Google Scholar]
- Guy, J.; Cheval, H.; Selfridge, J.; Bird, A. The role of mecp2 in the brain. Annu. Rev. Cell. Dev. Biol. 2011, 27, 631–652. [Google Scholar] [CrossRef]
- LaSalle, J.M.; Goldstine, J.; Balmer, D.; Greco, C.M. Quantitative localization of heterogeneous methyl-cpg-binding protein 2 (mecp2) expression phenotypes in normal and rett syndrome brain by laser scanning cytometry. Hum. Mol. Genet. 2001, 10, 1729–1740. [Google Scholar] [CrossRef]
- Balmer, D.; Goldstine, J.; Rao, Y.M.; LaSalle, J.M. Elevated methyl-cpg-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation. J. Mol. Med. 2003, 81, 61–68. [Google Scholar]
- Mullaney, B.C.; Johnston, M.V.; Blue, M.E. Developmental expression of methyl-cpg binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 2004, 123, 939–949. [Google Scholar] [CrossRef]
- Yasui, D.H.; Xu, H.; Dunaway, K.W.; Lasalle, J.M.; Jin, L.W.; Maezawa, I. Mecp2 modulates gene expression pathways in astrocytes. Mol. Autism 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ballas, N.; Lioy, D.T.; Grunseich, C.; Mandel, G. Non-cell autonomous influence of mecp2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 2009, 12, 311–317. [Google Scholar] [CrossRef]
- Maezawa, I.; Swanberg, S.; Harvey, D.; LaSalle, J.M.; Jin, L.W. Rett syndrome astrocytes are abnormal and spread mecp2 deficiency through gap junctions. J. Neurosci. 2009, 29, 5051–5061. [Google Scholar] [CrossRef]
- Rastegar, M.; Hotta, A.; Pasceri, P.; Makarem, M.; Cheung, A.Y.; Elliott, S.; Park, K.J.; Adachi, M.; Jones, F.S.; Clarke, I.D.; et al. Mecp2 isoform-specific vectors with regulated expression for rett syndrome gene therapy. PLoS One 2009, 4, e6810. [Google Scholar] [CrossRef]
- Wood, L.; Gray, N.W.; Zhou, Z.; Greenberg, M.E.; Shepherd, G.M. Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an rna interference model of methyl-cpg-binding protein 2 deficiency. J. Neurosci. 2009, 29, 12440–12448. [Google Scholar] [CrossRef]
- Akbarian, S.; Chen, R.Z.; Gribnau, J.; Rasmussen, T.P.; Fong, H.; Jaenisch, R.; Jones, E.G. Expression pattern of the rett syndrome gene mecp2 in primate prefrontal cortex. Neurobiol. Dis. 2001, 8, 784–791. [Google Scholar] [CrossRef]
- Trappe, R.; Laccone, F.; Cobilanschi, J.; Meins, M.; Huppke, P.; Hanefeld, F.; Engel, W. Mecp2 mutations in sporadic cases of rett syndrome are almost exclusively of paternal origin. Am. J. Hum. Genet. 2001, 68, 1093–1101. [Google Scholar] [CrossRef]
- Wan, M.; Lee, S.S.; Zhang, X.; Houwink-Manville, I.; Song, H.R.; Amir, R.E.; Budden, S.; Naidu, S.; Pereira, J.L.; Lo, I.F.; et al. Rett syndrome and beyond: Recurrent spontaneous and familial mecp2 mutations at cpg hotspots. Am. J. Hum. Genet. 1999, 65, 1520–1529. [Google Scholar] [CrossRef]
- Chahrour, M.; Zoghbi, H.Y. The story of rett syndrome: From clinic to neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef]
- Dragich, J.; Houwink-Manville, I.; Schanen, C. Rett syndrome: A surprising result of mutation in mecp2. Hum. Mol. Genet. 2000, 9, 2365–2375. [Google Scholar]
- Sawalha, A.H.; Webb, R.; Han, S.; Kelly, J.A.; Kaufman, K.M.; Kimberly, R.P.; Alarcon-Riquelme, M.E.; James, J.A.; Vyse, T.J.; Gilkeson, G.S.; et al. Common variants within mecp2 confer risk of systemic lupus erythematosus. PLoS One 2008, 3, e1727. [Google Scholar] [CrossRef]
- Rett, A. [on a unusual brain atrophy syndrome in hyperammonemia in childhood]. Wiener medizinische Wochenschrift 1966, 116, 723–726. [Google Scholar]
- Shahbazian, M.D.; Zoghbi, H.Y. Rett syndrome and mecp2: Linking epigenetics and neuronal function. Am. J. Hum. Genet. 2002, 71, 1259–1272. [Google Scholar] [CrossRef]
- Burd, L.; Gascon, G.G. Rett syndrome: Review and discussion of current diagnostic criteria. J. Child Neurol. 1988, 3, 263–268. [Google Scholar] [CrossRef]
- Jan, M.M.; Dooley, J.M.; Gordon, K.E. Male rett syndrome variant: Application of diagnostic criteria. Pediatr. Neurol. 1999, 20, 238–240. [Google Scholar] [CrossRef]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in x-linked mecp2, encoding methyl-cpg-binding protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef]
- Budden, S.S.; Dorsey, H.C.; Steiner, R.D. Clinical profile of a male with rett syndrome. Brain Dev. 2005, 27 Suppl 1, S69–S71. [Google Scholar] [CrossRef]
- Dayer, A.G.; Bottani, A.; Bouchardy, I.; Fluss, J.; Antonarakis, S.E.; Haenggeli, C.A.; Morris, M.A. Mecp2 mutant allele in a boy with rett syndrome and his unaffected heterozygous mother. Brain Dev. 2007, 29, 47–50. [Google Scholar] [CrossRef]
- Hagberg, B.; Hanefeld, F.; Percy, A.; Skjeldal, O. An update on clinically applicable diagnostic criteria in rett syndrome. Comments to rett syndrome clinical criteria consensus panel satellite to european paediatric neurology society meeting, baden baden, germany, 11 september 2001. Euro. J. Paediatr. Neurol. 2002, 6, 293–297. [Google Scholar]
- Nomura, Y.; Segawa, M. Natural history of rett syndrome. J. Child Neurol. 2005, 20, 764–768. [Google Scholar]
- Segawa, M.; Nomura, Y. Rett syndrome. Curr. Opin. Neurol. 2005, 18, 97–104. [Google Scholar] [CrossRef]
- Hagberg, B.; Witt-Engerstrom, I. Rett syndrome: A suggested staging system for describing impairment profile with increasing age towards adolescence. Am. J. Med. Genet. Supplement 1986, 1, 47–59. [Google Scholar] [CrossRef]
- Hagberg, B. Rett syndrome: Long-term clinical follow-up experiences over four decades. J. Child Neurol. 2005, 20, 722–727. [Google Scholar]
- Jian, L.; Nagarajan, L.; de Klerk, N.; Ravine, D.; Bower, C.; Anderson, A.; Williamson, S.; Christodoulou, J.; Leonard, H. Predictors of seizure onset in rett syndrome. J. Pediatr. 2006, 149, 542–547. [Google Scholar] [CrossRef]
- Young, J.I.; Zoghbi, H.Y. X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am. J. Hum. Genet. 2004, 74, 511–520. [Google Scholar] [CrossRef]
- Amir, R.E.; Van den Veyver, I.B.; Schultz, R.; Malicki, D.M.; Tran, C.Q.; Dahle, E.J.; Philippi, A.; Timar, L.; Percy, A.K.; Motil, K.J.; et al. Influence of mutation type and x chromosome inactivation on rett syndrome phenotypes. Ann. Neurol. 2000, 47, 670–679. [Google Scholar] [CrossRef]
- Zappella, M.; Meloni, I.; Longo, I.; Hayek, G.; Renieri, A. Preserved speech variants of the rett syndrome: Molecular and clinical analysis. American J. Med. Genet. 2001, 104, 14–22. [Google Scholar] [CrossRef]
- Ariani, F.; Hayek, G.; Rondinella, D.; Artuso, R.; Mencarelli, M.A.; Spanhol-Rosseto, A.; Pollazzon, M.; Buoni, S.; Spiga, O.; Ricciardi, S.; et al. Foxg1 is responsible for the congenital variant of rett syndrome. Am. J. Hum. Genet. 2008, 83, 89–93. [Google Scholar] [CrossRef]
- Mari, F.; Azimonti, S.; Bertani, I.; Bolognese, F.; Colombo, E.; Caselli, R.; Scala, E.; Longo, I.; Grosso, S.; Pescucci, C.; et al. Cdkl5 belongs to the same molecular pathway of mecp2 and it is responsible for the early-onset seizure variant of rett syndrome. Hum. Mol. Genet. 2005, 14, 1935–1946. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, Y.C.; Yu, J.; Miao, S.; Zheng, J.; Xu, L.; Zhou, Y.; Li, D.; Zhang, C.; Tao, J.; et al. Cdkl5, a protein associated with rett syndrome, regulates neuronal morphogenesis via rac1 signaling. J. Neurosci. 2010, 30, 12777–12786. [Google Scholar] [CrossRef]
- Ellaway, C.J.; Ho, G.; Bettella, E.; Knapman, A.; Collins, F.; Hackett, A.; McKenzie, F.; Darmanian, A.; Peters, G.B.; Fagan, K.; et al. 14q12 microdeletions excluding foxg1 give rise to a congenital variant rett syndrome-like phenotype. Eur. J. Hum. Genet. 2013, 21, 522–527. [Google Scholar] [CrossRef]
- Subramaniam, B.; Naidu, S.; Reiss, A.L. Neuroanatomy in rett syndrome: Cerebral cortex and posterior fossa. Neurology 1997, 48, 399–407. [Google Scholar] [CrossRef]
- Armstrong, D.D. Neuropathology of rett syndrome. J. Child Neurol. 2005, 20, 747–753. [Google Scholar] [CrossRef]
- Jellinger, K.; Armstrong, D.; Zoghbi, H.Y.; Percy, A.K. Neuropathology of rett syndrome. Acta Neuropathol. 1988, 76, 142–158. [Google Scholar] [CrossRef]
- Oldfors, A.; Sourander, P.; Armstrong, D.L.; Percy, A.K.; Witt-Engerstrom, I.; Hagberg, B.A. Rett syndrome: Cerebellar pathology. Pediatr. Neurol. 1990, 6, 310–314. [Google Scholar] [CrossRef]
- Collins, A.L.; Levenson, J.M.; Vilaythong, A.P.; Richman, R.; Armstrong, D.L.; Noebels, J.L.; David Sweatt, J.; Zoghbi, H.Y. Mild overexpression of mecp2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 2004, 13, 2679–2689. [Google Scholar] [CrossRef]
- Samaco, R.C.; Fryer, J.D.; Ren, J.; Fyffe, S.; Chao, H.T.; Sun, Y.; Greer, J.J.; Zoghbi, H.Y.; Neul, J.L. A partial loss of function allele of methyl-cpg-binding protein 2 predicts a human neurodevelopmental syndrome. Hum. Mol. Genet. 2008, 17, 1718–1727. [Google Scholar] [CrossRef]
- Meins, M.; Lehmann, J.; Gerresheim, F.; Herchenbach, J.; Hagedorn, M.; Hameister, K.; Epplen, J.T. Submicroscopic duplication in xq28 causes increased expression of the mecp2 gene in a boy with severe mental retardation and features of rett syndrome. J. Med. Genet. 2005, 42, e12. [Google Scholar] [CrossRef]
- del Gaudio, D.; Fang, P.; Scaglia, F.; Ward, P.A.; Craigen, W.J.; Glaze, D.G.; Neul, J.L.; Patel, A.; Lee, J.A.; Irons, M.; et al. Increased mecp2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet. Med. 2006, 8, 784–792. [Google Scholar] [CrossRef]
- Friez, M.J.; Jones, J.R.; Clarkson, K.; Lubs, H.; Abuelo, D.; Bier, J.A.; Pai, S.; Simensen, R.; Williams, C.; Giampietro, P.F.; et al. Recurrent infections, hypotonia, and mental retardation caused by duplication of mecp2 and adjacent region in xq28. Pediatrics 2006, 118, e1687–1695. [Google Scholar] [CrossRef]
- Lugtenberg, D.; Kleefstra, T.; Oudakker, A.R.; Nillesen, W.M.; Yntema, H.G.; Tzschach, A.; Raynaud, M.; Rating, D.; Journel, H.; Chelly, J.; et al. Structural variation in xq28: Mecp2 duplications in 1% of patients with unexplained xlmr and in 2% of male patients with severe encephalopathy. Eur. J. Hum. Genet. 2009, 17, 444–453. [Google Scholar] [CrossRef]
- Smyk, M.; Obersztyn, E.; Nowakowska, B.; Nawara, M.; Cheung, S.W.; Mazurczak, T.; Stankiewicz, P.; Bocian, E. Different-sized duplications of xq28, including mecp2, in three males with mental retardation, absent or delayed speech, and recurrent infections. Am. J. Med. Genet. B 2008, 147B, 799–806. [Google Scholar] [CrossRef]
- Moretti, P.; Zoghbi, H.Y. Mecp2 dysfunction in rett syndrome and related disorders. Curr. Opin. in Genet. Dev. 2006, 16, 276–281. [Google Scholar] [CrossRef]
- Ramocki, M.B.; Tavyev, Y.J.; Peters, S.U. The mecp2 duplication syndrome. Am. J. Med. Genet. A 2010, 152A, 1079–1088. [Google Scholar] [CrossRef]
- Ramocki, M.B.; Peters, S.U.; Tavyev, Y.J.; Zhang, F.; Carvalho, C.M.; Schaaf, C.P.; Richman, R.; Fang, P.; Glaze, D.G.; Lupski, J.R.; et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with mecp2 duplication syndrome. Ann. Neurol. 2009, 66, 771–782. [Google Scholar] [CrossRef]
- Watson, P.; Black, G.; Ramsden, S.; Barrow, M.; Super, M.; Kerr, B.; Clayton-Smith, J. Angelman syndrome phenotype associated with mutations in mecp2, a gene encoding a methyl cpg binding protein. J. Med. Genet. 2001, 38, 224–228. [Google Scholar] [CrossRef]
- Turner, H.; MacDonald, F.; Warburton, S.; Latif, F.; Webb, T. Developmental delay and the methyl binding genes. J. Med. Genet. 2003, 40, E13. [Google Scholar] [CrossRef]
- Milani, D.; Pantaleoni, C.; D'Arrigo, S.; Selicorni, A.; Riva, D. Another patient with mecp2 mutation without classic rett syndrome phenotype. Pediatr. Neurol. 2005, 32, 355–357. [Google Scholar] [CrossRef]
- Couvert, P.; Bienvenu, T.; Aquaviva, C.; Poirier, K.; Moraine, C.; Gendrot, C.; Verloes, A.; Andres, C.; Le Fevre, A.C.; Souville, I.; et al. Mecp2 is highly mutated in x-linked mental retardation. Hum. Mol. Genet. 2001, 10, 941–946. [Google Scholar] [CrossRef]
- Gonzales, M.L.; LaSalle, J.M. The role of mecp2 in brain development and neurodevelopmental disorders. Curr. Psychiat. Rep. 2010, 12, 127–134. [Google Scholar] [CrossRef]
- Van Esch, H.; Bauters, M.; Ignatius, J.; Jansen, M.; Raynaud, M.; Hollanders, K.; Lugtenberg, D.; Bienvenu, T.; Jensen, L.R.; Gecz, J.; et al. Duplication of the mecp2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 2005, 77, 442–453. [Google Scholar] [CrossRef]
- Schanen, N.C.; Kurczynski, T.W.; Brunelle, D.; Woodcock, M.M.; Dure, L.S.t.; Percy, A.K. Neonatal encephalopathy in two boys in families with recurrent rett syndrome. J. Child Neurol. 1998, 13, 229–231. [Google Scholar] [CrossRef]
- Villard, L.; Kpebe, A.; Cardoso, C.; Chelly, P.J.; Tardieu, P.M.; Fontes, M. Two affected boys in a rett syndrome family: Clinical and molecular findings. Neurology 2000, 55, 1188–1193. [Google Scholar] [CrossRef]
- Johnson, C.P.; Myers, S.M.; American Academy of Pediatrics Council on Children With, D. Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120, 1183–1215. [Google Scholar] [CrossRef]
- Carney, R.M.; Wolpert, C.M.; Ravan, S.A.; Shahbazian, M.; Ashley-Koch, A.; Cuccaro, M.L.; Vance, J.M.; Pericak-Vance, M.A. Identification of mecp2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 2003, 28, 205–211. [Google Scholar] [CrossRef]
- Shibayama, A.; Cook, E.H., Jr.; Feng, J.; Glanzmann, C.; Yan, J.; Craddock, N.; Jones, I.R.; Goldman, D.; Heston, L.L.; Sommer, S.S. Mecp2 structural and 3'-utr variants in schizophrenia, autism and other psychiatric diseases: A possible association with autism. Am. J. Med. Genet. B 2004, 128B, 50–53. [Google Scholar] [CrossRef]
- Nagarajan, R.P.; Hogart, A.R.; Gwye, Y.; Martin, M.R.; LaSalle, J.M. Reduced mecp2 expression is frequent in autism frontal cortex and correlates with aberrant mecp2 promoter methylation. Epigenetics 2006, 1, e1–e11. [Google Scholar] [CrossRef]
- Chiurazzi, P.; Pomponi, M.G.; Willemsen, R.; Oostra, B.A.; Neri, G. In vitro reactivation of the fmr1 gene involved in fragile x syndrome. Hum. Mol. Genet. 1998, 7, 109–113. [Google Scholar]
- Nguyen, A.; Rauch, T.A.; Pfeifer, G.P.; Hu, V.W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, rora, whose protein product is reduced in autistic brain. FASEB J. 2010, 24, 3036–3051. [Google Scholar] [CrossRef]
- Liyanage, V.R.; Zachariah, R.M.; Rastegar, M. Decitabine alters the expression of mecp2 isoforms via dynamic DNA methylation at the mecp2 regulatory elements in neural stem cells. Mol. Autism 2013, 4, 1–21. [Google Scholar]
- Adegbola, A.A.; Gonzales, M.L.; Chess, A.; LaSalle, J.M.; Cox, G.F. A novel hypomorphic mecp2 point mutation is associated with a neuropsychiatric phenotype. Hum. Genet. 2009, 124, 615–623. [Google Scholar] [CrossRef]
- Astley, S.J. Fetal alcohol syndrome prevention in washington state: Evidence of success. Paediatr. Perinat. Ep. 2004, 18, 344–351. [Google Scholar] [CrossRef]
- Haycock, P.C. Fetal alcohol spectrum disorders: The epigenetic perspective. Biol. Reprod. 2009, 81, 607–617. [Google Scholar] [CrossRef]
- Kim, P.; Park, J.H.; Choi, C.S.; Choi, I.; Joo, S.H.; Kim, M.K.; Kim, S.Y.; Kim, K.C.; Park, S.H.; Kwon, K.J.; et al. Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and mecp2 expression in rodent offspring. Neurochem. Res. 2013, 38, 620–631. [Google Scholar] [CrossRef]
- Tunc-Ozcan, E.; Ullmann, T.M.; Shukla, P.K.; Redei, E.E. Low-dose thyroxine attenuates autism-associated adverse effects of fetal alcohol in male offspring's social behavior and hippocampal gene expression. Alcohol. Clin. Exp. Res. 2013, 37, 1986–1995. [Google Scholar] [CrossRef]
- Romano-Lopez, A.; Mendez-Diaz, M.; Ruiz-Contreras, A.E.; Carrisoza, R.; Prospero-Garcia, O. Maternal separation and proclivity for ethanol intake: A potential role of the endocannabinoid system in rats. Neuroscience 2012, 223, 296–304. [Google Scholar] [CrossRef]
- Zoll, B.; Huppke, P.; Wessel, A.; Bartels, I.; Laccone, F. Fetal alcohol syndrome in association with rett syndrome. Genet. Couns. 2004, 15, 207–212. [Google Scholar]
- Repunte-Canonigo, V.; Chen, J.; Lefebvre, C.; Kawamura, T.; Kreifeldt, M.; Basson, O.; Roberts, A.J.; Sanna, P.P. Mecp2 regulates ethanol sensitivity and intake. Addict. Biol. 2013. [Google Scholar] [CrossRef]
- Walker, F.O. Huntington's disease. Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef]
- van der Burg, J.M.; Bjorkqvist, M.; Brundin, P. Beyond the brain: Widespread pathology in huntington's disease. Lancet Neurol. 2009, 8, 765–774. [Google Scholar] [CrossRef]
- Myers, R.H. Huntington's disease genetics. NeuroRx 2004, 1, 255–262. [Google Scholar] [CrossRef]
- McFarland, K.N.; Huizenga, M.N.; Darnell, S.B.; Sangrey, G.R.; Berezovska, O.; Cha, J.H.; Outeiro, T.F.; Sadri-Vakili, G. Mecp2: A novel huntingtin interactor. Hum. Mol. Genet. 2013.
- Parry, L.; Clarke, A.R. The roles of the methyl-cpg binding proteins in cancer. Genes Cancer 2011, 2, 618–630. [Google Scholar] [CrossRef]
- Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (timp-2) gene in human prostate tumors. Oncogene 2007, 26, 5229–5237. [Google Scholar] [CrossRef]
- Pampalakis, G.; Prosnikli, E.; Agalioti, T.; Vlahou, A.; Zoumpourlis, V.; Sotiropoulou, G. A tumor-protective role for human kallikrein-related peptidase 6 in breast cancer mediated by inhibition of epithelial-to-mesenchymal transition. Cancer Res. 2009, 69, 3779–3787. [Google Scholar] [CrossRef]
- Pancione, M.; Sabatino, L.; Fucci, A.; Carafa, V.; Nebbioso, A.; Forte, N.; Febbraro, A.; Parente, D.; Ambrosino, C.; Normanno, N.; et al. Epigenetic silencing of peroxisome proliferator-activated receptor gamma is a biomarker for colorectal cancer progression and adverse patients' outcome. PLoS One 2010, 5, e14229. [Google Scholar] [CrossRef]
- Lin, R.K.; Hsu, H.S.; Chang, J.W.; Chen, C.Y.; Chen, J.T.; Wang, Y.C. Alteration of DNA methyltransferases contributes to 5'cpg methylation and poor prognosis in lung cancer. Lung Cancer 2007, 55, 205–213. [Google Scholar] [CrossRef]
- Shin, J.E.; Park, S.H.; Jang, Y.K. Epigenetic up-regulation of leukemia inhibitory factor (lif) gene during the progression to breast cancer. Mol. Cells 2011, 31, 181–189. [Google Scholar] [CrossRef]
- Wada, R.; Akiyama, Y.; Hashimoto, Y.; Fukamachi, H.; Yuasa, Y. Mir-212 is downregulated and suppresses methyl-cpg-binding protein mecp2 in human gastric cancer. Int. J. Cancer 2010, 127, 1106–1114. [Google Scholar]
- Wang, Z.; Zhang, J.; Zhang, Y.; Srivenugopal, K.S.; Lim, S.H. Span-xb core promoter sequence is regulated in myeloma cells by specific cpg dinucleotides associated with the mecp2 protein. Int. J. Cancer 2006, 119, 2878–2884. [Google Scholar] [CrossRef]
- Meklat, F.; Li, Z.; Wang, Z.; Zhang, Y.; Zhang, J.; Jewell, A.; Lim, S.H. Cancer-testis antigens in haematological malignancies. Br. J. Haematol. 2007, 136, 769–776. [Google Scholar] [CrossRef]
- Xu, X.; Jin, H.; Liu, Y.; Liu, L.; Wu, Q.; Guo, Y.; Yu, L.; Liu, Z.; Zhang, T.; Zhang, X.; et al. The expression patterns and correlations of claudin-6, methy-cpg binding protein 2, DNA methyltransferase 1, histone deacetylase 1, acetyl-histone h3 and acetyl-histone h4 and their clinicopathological significance in breast invasive ductal carcinomas. Diagn. Pathol. 2012, 7, 33. [Google Scholar] [CrossRef]
- Wang, J.T.; Wu, T.T.; Bai, L.; Ding, L.; Hao, M.; Wang, Y. [effect of folate in modulating the expression of DNA methyltransferase 1 and methyl-cpg-bingding protein 2 in cervical cancer cell lines]. Zhonghua Liu Xing Bing Xue Za Zhi 2013, 34, 173–177. [Google Scholar]
- Fortuna, G.; Brennan, M.T. Systemic lupus erythematosus: Epidemiology, pathophysiology, manifestations, and management. Dent Clin. North Am. 2013, 57, 631–655. [Google Scholar] [CrossRef]
- Okada, M.; Ogasawara, H.; Kaneko, H.; Hishikawa, T.; Sekigawa, I.; Hashimoto, H.; Maruyama, N.; Kaneko, Y.; Yamamoto, N. Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J. Rheumatol. 2002, 29, 1678–1682. [Google Scholar]
- Lu, Q.; Wu, A.; Tesmer, L.; Ray, D.; Yousif, N.; Richardson, B. Demethylation of cd40lg on the inactive x in t cells from women with lupus. J. Immunol. 2007, 179, 6352–6358. [Google Scholar]
- Deng, C.; Kaplan, M.J.; Yang, J.; Ray, D.; Zhang, Z.; McCune, W.J.; Hanash, S.M.; Richardson, B.C. Decreased ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in t lymphocytes from lupus patients. Arthritis Rheum. 2001, 44, 397–407. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, L.; Chen, J.; Hu, Z.; Cai, G.; Hong, Q. Association of mecp2 (rs2075596, rs2239464) genetic polymorphisms with systemic lupus erythematosus: A meta-analysis. Lupus 2013, 22, 908–918. [Google Scholar] [CrossRef]
- Webb, R.; Wren, J.D.; Jeffries, M.; Kelly, J.A.; Kaufman, K.M.; Tang, Y.; Frank, M.B.; Merrill, J.; Kimberly, R.P.; Edberg, J.C.; et al. Variants within mecp2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum. 2009, 60, 1076–1084. [Google Scholar]
- Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51 Suppl 5, v3–11. [Google Scholar] [CrossRef]
- Cooles, F.A.; Isaacs, J.D. Pathophysiology of rheumatoid arthritis. Curr. Opin. Rheum. 2011, 23, 233–240. [Google Scholar] [CrossRef]
- Ballestar, E. Epigenetic alterations in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 2011, 7, 263–271. [Google Scholar] [CrossRef]
- Darrah, E.; Rosen, A.; Giles, J.T.; Andrade, F. Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: Novel insights into autoantigen selection in rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 92–98. [Google Scholar] [CrossRef]
- Chandrashekara, S.; Sachin, S. Measures in rheumatoid arthritis: Are we measuring too many parameters. Int. J. Rheum. Dis. 2012, 15, 239–248. [Google Scholar] [CrossRef]
- Miao, C.G.; Huang, C.; Huang, Y.; Yang, Y.Y.; He, X.; Zhang, L.; Lv, X.W.; Jin, Y.; Li, J. Mecp2 modulates the canonical wnt pathway activation by targeting sfrp4 in rheumatoid arthritis fibroblast-like synoviocytes in rats. Cell. Signalling 2013, 25, 598–608. [Google Scholar] [CrossRef]
- Miao, C.G.; Yang, Y.Y.; He, X.; Li, J. New advances of DNA methylation and histone modifications in rheumatoid arthritis, with special emphasis on mecp2. Cell. Signalling 2013, 25, 875–882. [Google Scholar] [CrossRef]
- Worman, S.; Ganiats, T.G. Hirschsprung’s disease: A cause of chronic constipation in children. Am. Fam. Physician 1995, 51, 487–494. [Google Scholar]
- Martucciello, G.; Ceccherini, I.; Lerone, M.; Jasonni, V. Pathogenesis of hirschsprung's disease. J. Pediatr. Surg. 2000, 35, 1017–1025. [Google Scholar] [CrossRef]
- Martucciello, G. Hirschsprung's disease, one of the most difficult diagnoses in pediatric surgery: A review of the problems from clinical practice to the bench. Eur. J. Pediatr. Surg. 2008, 18, 140–149. [Google Scholar] [CrossRef]
- Badner, J.A.; Sieber, W.K.; Garver, K.L.; Chakravarti, A. A genetic study of hirschsprung disease. Am. J. Hum. Genet. 1990, 46, 568–580. [Google Scholar]
- Parisi, M.A.; Kapur, R.P. Genetics of hirschsprung disease. Curr. Opin. Pediatr. 2000, 12, 610–617. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, J.; Tang, J.; Li, B.; Geng, Q.; Jiang, W.; Wu, W.; Rehan, V.; Tang, W.; Xu, X.; et al. Down-regulation of mecp2 in hirschsprung's disease. J. Pediatr. Surg. 2013, 48, 2099–2105. [Google Scholar] [CrossRef]
- Jedele, K.B. The overlapping spectrum of rett and angelman syndromes: A clinical review. Seminars in Pediatr. Neurol. 2007, 14, 108–117. [Google Scholar] [CrossRef]
- Sohn, B.H.; Park, I.Y.; Lee, J.J.; Yang, S.J.; Jang, Y.J.; Park, K.C.; Kim, D.J.; Lee, D.C.; Sohn, H.A.; Kim, T.W.; et al. Functional switching of tgf-beta1 signaling in liver cancer via epigenetic modulation of a single cpg site in ttp promoter. Gastroenterology 2010, 138, 1898–1908. [Google Scholar] [CrossRef]
- Guy, J.; Hendrich, B.; Holmes, M.; Martin, J.E.; Bird, A. A mouse mecp2-null mutation causes neurological symptoms that mimic rett syndrome. Nat. Genet. 2001, 27, 322–326. [Google Scholar] [CrossRef]
- Pelka, G.J.; Watson, C.M.; Radziewic, T.; Hayward, M.; Lahooti, H.; Christodoulou, J.; Tam, P.P. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 2006, 129, 887–898. [Google Scholar] [CrossRef]
- Calfa, G.; Percy, A.K.; Pozzo-Miller, L. Experimental models of rett syndrome based on mecp2 dysfunction. Exp. Biol. Med. 2011, 236, 3–19. [Google Scholar]
- Guy, J.; Gan, J.; Selfridge, J.; Cobb, S.; Bird, A. Reversal of neurological defects in a mouse model of rett syndrome. Science 2007, 315, 1143–1147. [Google Scholar] [CrossRef]
- Giacometti, E.; Luikenhuis, S.; Beard, C.; Jaenisch, R. Partial rescue of mecp2 deficiency by postnatal activation of mecp2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1931–1936. [Google Scholar] [CrossRef]
- Chen, R.Z.; Akbarian, S.; Tudor, M.; Jaenisch, R. Deficiency of methyl-cpg binding protein-2 in cns neurons results in a rett-like phenotype in mice. Nat. Genet. 2001, 27, 327–331. [Google Scholar] [CrossRef]
- Shahbazian, M.; Young, J.; Yuva-Paylor, L.; Spencer, C.; Antalffy, B.; Noebels, J.; Armstrong, D.; Paylor, R.; Zoghbi, H. Mice with truncated mecp2 recapitulate many rett syndrome features and display hyperacetylation of histone h3. Neuron 2002, 35, 243–254. [Google Scholar] [CrossRef]
- Fyffe, S.L.; Neul, J.L.; Samaco, R.C.; Chao, H.T.; Ben-Shachar, S.; Moretti, P.; McGill, B.E.; Goulding, E.H.; Sullivan, E.; Tecott, L.H.; et al. Deletion of mecp2 in sim1-expressing neurons reveals a critical role for mecp2 in feeding behavior, aggression, and the response to stress. Neuron 2008, 59, 947–958. [Google Scholar] [CrossRef]
- Lindeberg, J.; Usoskin, D.; Bengtsson, H.; Gustafsson, A.; Kylberg, A.; Soderstrom, S.; Ebendal, T. Transgenic expression of cre recombinase from the tyrosine hydroxylase locus. Genesis 2004, 40, 67–73. [Google Scholar] [CrossRef]
- Samaco, R.C.; Mandel-Brehm, C.; Chao, H.T.; Ward, C.S.; Fyffe-Maricich, S.L.; Ren, J.; Hyland, K.; Thaller, C.; Maricich, S.M.; Humphreys, P.; et al. Loss of mecp2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21966–21971. [Google Scholar] [CrossRef]
- Luikenhuis, S.; Giacometti, E.; Beard, C.F.; Jaenisch, R. Expression of mecp2 in postmitotic neurons rescues rett syndrome in mice. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6033–6038. [Google Scholar] [CrossRef]
- Lawson-Yuen, A.; Liu, D.; Han, L.; Jiang, Z.I.; Tsai, G.E.; Basu, A.C.; Picker, J.; Feng, J.; Coyle, J.T. Ube3a mrna and protein expression are not decreased in mecp2r168x mutant mice. Brain Res. 2007, 1180, 1–6. [Google Scholar]
- Jentarra, G.M.; Olfers, S.L.; Rice, S.G.; Srivastava, N.; Homanics, G.E.; Blue, M.; Naidu, S.; Narayanan, V. Abnormalities of cell packing density and dendritic complexity in the mecp2 a140v mouse model of rett syndrome/x-linked mental retardation. BMC Neurosci. 2010, 11, 19. [Google Scholar] [CrossRef]
- Kernohan, K.D.; Jiang, Y.; Tremblay, D.C.; Bonvissuto, A.C.; Eubanks, J.H.; Mann, M.R.; Berube, N.G. Atrx partners with cohesin and mecp2 and contributes to developmental silencing of imprinted genes in the brain. Dev. Cell 2010, 18, 191–202. [Google Scholar] [CrossRef]
- Yasui, D.H.; Gonzales, M.L.; Aflatooni, J.O.; Crary, F.K.; Hu, D.J.; Gavino, B.J.; Golub, M.S.; Vincent, J.B.; Carolyn Schanen, N.; Olson, C.O.; et al. Mice with an isoform-ablating mecp2 exon 1 mutation recapitulate the neurologic deficits of rett syndrome. Hum. Mol. Genet. 2014. [Google Scholar] [CrossRef]
- Tao, J.; Hu, K.; Chang, Q.; Wu, H.; Sherman, N.E.; Martinowich, K.; Klose, R.J.; Schanen, C.; Jaenisch, R.; Wang, W.; et al. Phosphorylation of mecp2 at serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4882–4887. [Google Scholar] [CrossRef]
- Jin, J.; Bao, X.; Wang, H.; Pan, H.; Zhang, Y.; Wu, X. Rnai-induced down-regulation of mecp2 expression in the rat brain. Int. J. Dev. Neurosci. 2008, 26, 457–465. [Google Scholar] [CrossRef]
- Cukier, H.N.; Perez, A.M.; Collins, A.L.; Zhou, Z.; Zoghbi, H.Y.; Botas, J. Genetic modifiers of mecp2 function in drosophila. PLoS Genet. 2008, 4, e1000179. [Google Scholar] [CrossRef]
- Pietri, T.; Roman, A.C.; Guyon, N.; Romano, S.A.; Washbourne, P.; Moens, C.B.; de Polavieja, G.G.; Sumbre, G. The first mecp2-null zebrafish model shows altered motor behaviors. Front. Neural Circuits 2013, 7, 118. [Google Scholar]
- Chao, H.T.; Chen, H.; Samaco, R.C.; Xue, M.; Chahrour, M.; Yoo, J.; Neul, J.L.; Gong, S.; Lu, H.C.; Heintz, N.; et al. Dysfunction in gaba signalling mediates autism-like stereotypies and rett syndrome phenotypes. Nature 2010, 468, 263–269. [Google Scholar] [CrossRef]
- Maezawa, I.; Jin, L.W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 2010, 30, 5346–5356. [Google Scholar] [CrossRef]
- Gemelli, T.; Berton, O.; Nelson, E.D.; Perrotti, L.I.; Jaenisch, R.; Monteggia, L.M. Postnatal loss of methyl-cpg binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of rett syndrome in mice. Biol. Psychiat. 2006, 59, 468–476. [Google Scholar] [CrossRef]
- Ebert, D.H.; Gabel, H.W.; Robinson, N.D.; Kastan, N.R.; Hu, L.S.; Cohen, S.; Navarro, A.J.; Lyst, M.J.; Ekiert, R.; Bird, A.P.; et al. Activity-dependent phosphorylation of mecp2 threonine 308 regulates interaction with ncor. Nature 2013, 499, 341–345. [Google Scholar]
- Lyst, M.J.; Ekiert, R.; Ebert, D.H.; Merusi, C.; Nowak, J.; Selfridge, J.; Guy, J.; Kastan, N.R.; Robinson, N.D.; de Lima Alves, F.; et al. Rett syndrome mutations abolish the interaction of mecp2 with the ncor/smrt co-repressor. Nat. Neurosci. 2013, 16, 898–902. [Google Scholar] [CrossRef]
- Goffin, D.; Allen, M.; Zhang, L.; Amorim, M.; Wang, I.T.; Reyes, A.R.; Mercado-Berton, A.; Ong, C.; Cohen, S.; Hu, L.; et al. Rett syndrome mutation mecp2 t158a disrupts DNA binding, protein stability and erp responses. Nat. Neurosci. 2012, 15, 274–283. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ezeonwuka, C.D.; Rastegar, M. MeCP2-Related Diseases and Animal Models. Diseases 2014, 2, 45-70. https://doi.org/10.3390/diseases2010045
Ezeonwuka CD, Rastegar M. MeCP2-Related Diseases and Animal Models. Diseases. 2014; 2(1):45-70. https://doi.org/10.3390/diseases2010045
Chicago/Turabian StyleEzeonwuka, Chinelo D., and Mojgan Rastegar. 2014. "MeCP2-Related Diseases and Animal Models" Diseases 2, no. 1: 45-70. https://doi.org/10.3390/diseases2010045
APA StyleEzeonwuka, C. D., & Rastegar, M. (2014). MeCP2-Related Diseases and Animal Models. Diseases, 2(1), 45-70. https://doi.org/10.3390/diseases2010045