Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae
Abstract
:1. Introduction
1.1. Mitochondrial Functions and Dysfunctions
1.2. The Particular Properties of Mitochondrially-Encoded Mutations
2. Choice of Suitable Models to Study Mitochondrial Diseases
2.1. Mammalian Systems
2.2. Non Mammalian Organisms
2.3. Yeast, Saccharomyces Cerevisiae
2.3.1. General Properties
- (i)
- Simplicity, rapidity and low cost.
- (ii)
- Highly developed genetics with a diverse and well-adapted toolbox. Thousands of mutations exist in practically every nuclear gene of the genome, and any new mutation can be created in vitro and reintroduced into the genome thanks to the rich collection of tools, which has been developed.
- (iii)
- A wealth of functional studies organized into an efficient database. When the complete genome was published [48], we had some functional knowledge of about 30% of the roughly 5800 genes; the figure now reaches practically 85%. All information obtained is centralized in the Saccharomyces Genome Database or SGD, which is easy to use and kept up to date [49].
- (iv)
- Protein sequence conservation and heterologous complementation. All the properties I have described can be usefully exploited because bioinformatic analyses have revealed a high conservation thoughout eucaryotic evolution for many genes involved in basic cellular functions. As a consequence, we have gone a long way since the pioneering work of [50] on heterologous complementation of a yeast (S. pombe) mutation by a human gene. Recent orthology studies now show that nearly 1000 yeast genes are associated with human diseases [51], and in many cases the mammalian ortholog is functional and complements the yeast deletion mutant.
- (v)
- The “omics” approaches. Not only has the thorough annotation of the S. cerevisiae genome, performed by the yeast biologists themselves, served as basis for annotation of many other organisms, but the global approaches which have been developped to study regulatory networks, protein and gene interaction networks have served as pilots for applications to other organisms. This was also the case for computational analyses and the development of systems biology.
2.3.2. Why Is Yeast Particularly Well Suited for Mitochondrial Studies?
3. Mimicking Mitochondrial Pathogenic Mutations in Yeast Mitochondrial Genome
4. Impact on Possible Therapies
4.1. Identifying Correcting Genes and Derived Peptides
4.2. Import of RNA
4.3. Drug Screening
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Galuzzi, L.; Kepp, O.; Trojel-Hansen, C.; Kroemer, G. Mitochondrial control of cellular life, stress and death. Circ. Res. 2012, 111, 1198–1207. [Google Scholar] [CrossRef]
- Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Invest. 2013, 123, 951–957. [Google Scholar] [CrossRef]
- Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles and analysis. Biol. Chem. 2012, 393, 547–564. [Google Scholar]
- Johannsen, D.; Ravussin, E. The role of mitochondria in health and disease. Curr. Opin. Pharmacol. 2009, 9, 780–786. [Google Scholar] [CrossRef]
- Medina-Gomez, G. Mitochondria and endocrine function of adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 791–804. [Google Scholar]
- Griffiths, E.J. Mitochondria and heart disease. Adv. Exp. Med. Biol. 2012, 942, 249–267. [Google Scholar] [CrossRef]
- Dromparis, P.; Micheladis, E.D. Mitochondria in vascular health and disease. Ann. Rev. Physiol. 2013, 75, 95–126. [Google Scholar] [CrossRef]
- Fogg, V.C.; Lanning, N.J.; Mackeigan, J.P. Mitochondria in cancer: At the crossroads of life and death. Chin. J. Cancer 2011, 30, 526–539. [Google Scholar] [CrossRef]
- Gasparre, G.; Porcelli, A.M.; Lenaz, G.; Romeo, G. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring. Harb. Perspect. Biol. 2013. [Google Scholar] [CrossRef]
- Schon, E.A.; Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci. 2013, 55, 26–36. [Google Scholar] [CrossRef]
- Kornmann, B. The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 2013, 25, 443–448. [Google Scholar] [CrossRef]
- Corti, O.; Brice, A. Mitochondrial quality control turns out to be the principal suspect in Parkin and PINK1-related autosomal recessive Parkinson’s disease. Curr. Opin. Neurobiol. 2013, 23, 100–108. [Google Scholar] [CrossRef]
- Costa, V.; Scorrano, L. Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO J. 2012, 31, 1853–1854. [Google Scholar] [CrossRef]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.M.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Chinnery, P.F.; Elliott, H.R.; Hudson, G.; Samuels, D.C.; Relton, C.L. Epigenetic, epidemiology and mitochondrial DNA diseases. Int J. Epidemiol. 2012, 41, 177–187. [Google Scholar] [CrossRef]
- Chinnery, P.F.; Hudson, G. Mitochondrial genetics. Br. Med. Bull. 2013, 106, 135–159. [Google Scholar] [CrossRef]
- DiMauro, S. A history of mitochondrial diseases. J. Inherit. Metab. Dis. 2011, 34, 261–276. [Google Scholar] [CrossRef]
- Wallace, D.C.; Fan, W.; Procaccio, V. Mitochondrial energetics and therapeutics. Ann. Rev. Pathol. 2010, 5, 297–348. [Google Scholar] [CrossRef] [Green Version]
- Spinazzola, A.; Zeviani, M. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talks. J. Intern. Med. 2009, 265, 174–192. [Google Scholar] [CrossRef]
- Rinaldi, T.; Dallabona, C.; Ferrero, I.; Frontali, L.; Bolotin-Fukuhara, M. Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res. 2010, 10, 1006–1022. [Google Scholar] [CrossRef]
- Baile, M.G.; Claypool, S.M. The power of yeast to model diseases of the powerhouse of the cell. Front. Biosci. Landmark Ed. 2013, 18, 241–278. [Google Scholar] [CrossRef]
- Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 1797, 113–128. [Google Scholar]
- Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.N.; Rovio, A.T.; Bruder, C.E.; Bohlooly-Y, M.; Gidlöf, S.; Oldfors, A.; Wibom, R.; et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, 417–423. [Google Scholar] [CrossRef]
- Foury, F.; Vanderstraeten, S. Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J. 1992, 11, 2717–2726. [Google Scholar]
- Vanderstraeten, S.; van den Brule, S.; Hu, J.; Foury, F. The role of 3'–5' exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J. Biol. Chem. 1998, 273, 23690–23697. [Google Scholar] [CrossRef]
- Nakada, K.; Inoue, K.; Hayashi, J.I. Mito-Mice: Animal models for mitochondrial DNA-based diseases. Semin. Cell Dev. Biol. 2001, 12, 459–465. [Google Scholar] [CrossRef]
- Dell’Agnello, C.; Leo, S.; Agostino, A.; Szabadkai, G.; Tiveron, C.; Zullian, A.; Prelle, A.; Roubertoux, P.; Rizzuto, R.; Zeviani, P. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 2007, 16, 431–444. [Google Scholar]
- Yokota, M.; Shitara, H.; Hashizume, O.; Ishikawa, K.; Nakada, K.; Ishii, R.; Taya, C.; Takenaga, K.; Yonekawa, H.; Hayashii, J. Generation of trans-mitochondrial mito-mice by the introduction of a pathogenic G13997A mtDNA from highly metastatic lung carcinoma cells. FEBS Lett. 2010, 584, 3943–3948. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, T.; Tran, A.; Lu, X.; Tomilov, A.A.; Davies, V.; Cortopassi, G.; Chiamvimonvat, N.; Bers, D.M.; Votruba, M.; et al. OPA1 mutation and late onset cardiomyopathy: Mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc. 2012, 1, e003012. [Google Scholar]
- Bénit, P.; El-Khoury, R.; Schiff, S.; Sainsard-Chanet, A.; Rustin, P. Genetic background influences mitochondrial function: Modeling mitochondrial diseases for therapeutic development. Trends Mol. Med. 2010, 16, 210–217. [Google Scholar] [CrossRef]
- Mito, T.; Kikkawa, Y.; Shimizu, A.; Hashizume, O.; Katada, S.; Imanishi, H.; Ota, A.; Kato, U.; Nakada, K.; Hayashi, J. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cells lymphoma developments. PLoS One 2013, 8, e55789. [Google Scholar] [CrossRef] [Green Version]
- Tyynismaa, H.; Suomalainen, A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep. 2009, 10, 137–143. [Google Scholar] [CrossRef]
- Wallace, D.C.; Fan, W. The pathophysiology of mitochondrial disease as modeled in mouse. Genes Dev. 2009, 23, 1714–1736. [Google Scholar] [CrossRef]
- Nakada, K.; Hayashi, J.I. Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp. Anim. 2011, 60, 421–431. [Google Scholar] [CrossRef]
- Dogan, S.A.; Trifunovic, A. Modelling mitochondrial dysfunction in mice. Physiol. Res. 2011, 60, S61–S70. [Google Scholar]
- Jacobs, H.T. Making mitochondrial mutants. Trends Genet. 2001, 17, 653–660. [Google Scholar] [CrossRef]
- Jacobs, H.T.; Holt, I.J. The np 3243 MELAS mutation: Damned if you aminoacylate, damned if you don’t. Hum. Mol. Genet. 2000, 9, 463–465. [Google Scholar] [CrossRef]
- Sasarman, F.; Antonicka, H.; Shoubridge, E.A. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum. Mol. Genet. 2008, 17, 3697–3707. [Google Scholar] [CrossRef]
- Swerdlow, R.H. Mitochondrial in cybrids containing mitDNA from persons with mitochondriopathies. J. Neurosci. Res. 2007, 85, 3416–3428. [Google Scholar] [CrossRef]
- Tsang, W.Y.; Sayles, L.C.; Grad, L.I.; Pilgrim, D.B.; Lemire, B.D. Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J. Biol. Chem. 2001, 276, 32240–32246. [Google Scholar]
- Grad, L.I.; Lemire, B.D. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum. Mol. Genet. 2004, 13, 303–314. [Google Scholar] [CrossRef]
- Pierce, S.B.; Gersak, K.; Michaelson-Cohen, R.; Walsh, T.; Lee, M.K.; Malach, D.; Klevit, R.E.; King, M.C.; Levy-Lahat, E. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am. J. Hum. Genet. 2013, 92, 614–620. [Google Scholar] [CrossRef]
- Addo, M.G.; Cossard, R.; Pichard, D.; Obiri-Danso, K.; Rotig, A.; Delahodde, A. Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance. Bioch. Biophys. Acta 2010, 1802, 765–773. [Google Scholar]
- Rea, S.L.; Graham, B.H.; Nakamura-Ogiso, E.; Kar, A.; Falk, M.J. Bacteria, yeast, worms and flies: Exploiting simple model organisms to investigate human mitochondrial diseases. Dev. Disabil. Res. Rev. 2010, 16, 200–218. [Google Scholar] [CrossRef]
- Tsang, W.Y.; Lemire, B.D. Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem. Cell Biol. 2002, 80, 645–654. [Google Scholar] [CrossRef]
- Celotto, A.M.; Frank, A.C.; McGrath, S.W.; Fergestad, T.; van Voorhies, W.A.; Buttle, K.F.; Mannella, C.A.; Palladino, M.J. Mitochondrial encephalomyopathy in Drosophila. J. Neurosci. 2006, 26, 810–820. [Google Scholar] [CrossRef]
- Petit, N.; Touraille, S.; Debise, R.; Morel, F.; Renoux, M.; Lécher, P.; Alziari, S. Developmental changes in heteroplasmy level and mitochondrial gene expression in a Drosophila subobscura mitochondrial deletion mutant. Curr. Genet. 1998, 33, 330–339. [Google Scholar]
- Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 genes. Science 1996, 274, 563–567. [Google Scholar]
- Saccharomyces Genome Database. Available online: http://www.yeastgenome.org/ (accessed on 5 November 2013).
- Lee, M.G.; Nurse, P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 1987, 327, 31–35. [Google Scholar] [CrossRef]
- Heinicke, S.; Livstone, M.S.; Lu, C.; Oughtred, R.; Kang, F.; Angiuoli, S.V.; White, O.; Botstein, D.; Dolinski, K. The Princeton Protein Orthology Database (P-POD): A comparative genomics analysis tool for biologists. PLoS One 2007, 2, e766. [Google Scholar] [CrossRef]
- Botstein, D.; Fink, G.R. Yeast: An experimental organism for modern biology. Science 1988, 240, 1439–1443. [Google Scholar]
- Botstein, D.; Fink, G.R. Yeast: An experimental organism for the 21st century biology. Genetics 2011, 189, 695–704. [Google Scholar] [CrossRef]
- Johnston, S.A.; Anziano, P.Q.; Shark, K.; Sanford, J.C.; Butow, R.A. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 1988, 240, 1538–1541. [Google Scholar]
- Fox, T.D.; Sanford, J.C.; McMullin, T.W. Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc. Natl. Acad. Sci. USA 1988, 85, 7288–7292. [Google Scholar] [CrossRef]
- Bonnefoy, N.; Fox, T.D. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol. Biol. 2007, 372, 153–166. [Google Scholar] [CrossRef]
- MITOMAP: A human mitochondrial genome database. Available online: http://www.mitomap.org/MITOMAP/ (accessed on 5 November 2013).
- Gattermann, N.; Retzlaff, S.; Wang, Y.L.; Hofhaus, G.; Heinisch, J.; Aul, C.; Schneider, W. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome C oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997, 90, 4961–4972. [Google Scholar]
- Meunier, B. Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochem. J. 2001, 354, 407–412. [Google Scholar] [CrossRef]
- Fisher, N.; Meunier, B. Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. Pest Manag. Sci. 2005, 61, 973–978. [Google Scholar] [CrossRef]
- Fisher, N.; Meunier, B. Molecular basis of resistance to cytochrome bc1 inhibitors. FEMS Yeast Res. 2008, 8, 183–192. [Google Scholar] [CrossRef]
- Kessl, J.J.; Ha, K.H.; Merritt, A.K.; Lange, B.B.; Hill, P.; Meunier, B.; Meshnick, S.R.; Trumpower, B.L. Cytochrome b mutations that modify the ubiquinol-binding pocket of the cytochrome bc1 complex and confer anti-malarial drug resistance in Saccharomyces cerevisiae. J. Biol. Chem. 2005, 280, 17142–17148. [Google Scholar] [CrossRef]
- Ding, M.G.; Butler, C.A.; Saracco, S.A.; Fox, T.D.; Godard, F.; di Rago, J.P.; Trumpower, B.L. Introduction of cytochrome b mutations in Saccharomyces cerevisiae by a method that allows selection for both functional and non-functional cytochrome b proteins. Biochim. Biophys. Acta 2008, 1777, 1147–1156. [Google Scholar]
- Vallieres, C.; Fisher, N.; Meunier, B. Reconstructing the Qo site of Plasmodium falciparum bc1 complex in the yeast enzyme. PLoS One 2013, 8, e71726. [Google Scholar] [CrossRef]
- Blakely, E.L.; Mitchell, A.L.; Fisher, N.; Meunier, B.; Nijtmans, L.G.; Schaefer, A.M.; Jackson, M.J.; Turnbull, D.M.; Taylor, R.W. A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast. FEBS J. 2005, 272, 3583–3592. [Google Scholar] [CrossRef]
- Fisher, N.; Meunier, B. Effects of mutations in mitochondrial cytochrome b in yeast and man: Deficiency, compensation and disease. Eur. J. Biochem. 2001, 268, 1155–1116. [Google Scholar] [CrossRef]
- Fisher, N.; Castleden, C.K.; Bourges, I.; Brasseur, G.; Dujardin, G.; Meunier, B. Human disease-related mutations in cytochrome b studied in yeast. J. Biol. Chem. 2004, 279, 12951–12958. [Google Scholar]
- Meunier, B.; Fisher, N.; Ransac, S.; Mazat, J.P.; Brasseur, G. Respiratory complex III dysfunction in humans and the use of yeast as model organism to study mitochondrial myopathy and associated diseases. Biochim. Biophys. Acta 2013, 1827, 1346–1361. [Google Scholar]
- Larosa, V.; Coosemans, N.; Motte, P.; Bonnefoy, N.; Remacle, C. Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. Plant J. 2012, 70, 759–768. [Google Scholar] [CrossRef]
- Yarham, J.W.; Elson, J.L.; Blakely, E.L.; McFarland, R.; Taylor, R.W. Mitochondrial tRNA mutations and disease. Wyley Interdiscip. Rev. RNA 2010, 1, 304–324. [Google Scholar] [CrossRef]
- Rak, M.; Tetaud, E.; Duvezin-Caubet, S.; Ezkurdia, N.; Bietenhader, M.; Rytka, J.; di Rago, J.P. A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J. Biol. Chem. 2007, 282, 34039–34047. [Google Scholar]
- Kucharczyk, R.; Rak, M.; di Rago, J.P. Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim. Biophys. Acta 2009, 1793, 817–824. [Google Scholar] [CrossRef]
- Kucharczyk, R.; Salin, B.; di Rago, J.P. Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology. Hum. Mol. Genet. 2009, 18, 2889–2898. [Google Scholar] [CrossRef]
- Kucharczyk, R.; Ezkurdia, N.; Couplan, E.; Proacaccio, V.; Ackerman, S.H.; Blondel, M.; di Rago, J.P. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. BBA Bioenerg. 2010, 1797, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, R.; Zick, M.; Bietenhader, M.; Rak, M.; Couplan, E.; Blondel, M.; Caubet, S.D.; di Rago, J.P. Mitochondrial ATP synthase disorders: Molecular mechanisms and the quest for curative therapeutic approaches. Biochim. Biophys. Acta 2009, 1793, 186–199. [Google Scholar] [CrossRef]
- De Meirleir, L.; Seneca, S.; Lissens, W.; Schoentjes, E.; Desprechins, B. Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase6 gene. Pediatr. Neurol. 1995, 13, 242–246. [Google Scholar] [CrossRef]
- Kucharczyk, R.; Giraud, M.F.; Brèthes, D.; Wysocka-Kapcinska, M.; Ezkurdia, N.; Salin, B.; Velours, J.; Camougrand, N.; Haraux, F.; di Rago, J.P. Defining the pathogenesis of human mtDNA mutations using a yeast model: The case of 8851C. Int. J. Biochem. Cell Biol. 2013, 45, 130–140. [Google Scholar] [CrossRef]
- Steele, D.F.; Butler, C.A.; Fox, T.D. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA 1996, 93, 5253–5257. [Google Scholar] [CrossRef]
- Rohou, H.; Francisci, S.; Rinaldi, T.; Frontali, L.; Bolotin-Fukuhara, M. Reintroduction of a characterized mit tRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 2001, 18, 219–227. [Google Scholar] [CrossRef]
- Feuermann, M.; Francisci, S.; Rinaldi, T.; de Luca, C.; Rohou, H.; Frontali, L.; Bolotin-Fukuhara, M. The yeast counterparts of human MELAS mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep. 2003, 4, 53–58. [Google Scholar] [CrossRef]
- Goto, Y.; Tojo, M.; Tohyama, J.; Horai, S.; Nonaka, I. A novel point mutation in the mitochondrial tRNALeuUUR gene in a family with mitochondrial myopathy. Ann. Neurol. 1992, 31, 672–675. [Google Scholar] [CrossRef]
- Sweeney, M.G.; Bundey, S.; Brockington, M.; Poulton, K.R.; Winer, J.B.; Harding, A.E. Mitochondrial myopathy associated with sudden death in young adults and a novel mutation in the mitochondrial DNA leucine transfer RNA(UUR) gene. Qxf. J. Med. 1993, 86, 709–713. [Google Scholar]
- Mariotti, C.; Tiranti, V.; Carrara, F.; Dallapiccola, B.; DiDonato, S.; Zeviani, M. Defective respiratory capacity and mitochondrial protein synthesis in transformant cybrids harboring the tRNA(Leu(UUR)) mutation associated with maternally inherited myopathy and cardiomyopathy. J. Clin. Invest. 1994, 93, 1102–1107. [Google Scholar] [CrossRef]
- Houshmand, M.; Lindberg, C.; Mossemi, A.R.; Oldfors, A.; Holme, E. A novel heteroplasmic point mutation in the mitochondrial tRNA(Lys) gene in a sporadic case of mitochondrial encephalomyopathy: De novo mutation and no transmission to the offspring. Hum. Mutat. 1999, 13, 203–209. [Google Scholar] [CrossRef]
- McFarland, R.; Clark, K.M.; Morris, A.A.; Taylor, R.W.; Macphail, S.; Lightowlers, R.N.; Turnbull, D.M. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat. Genet. 2002, 30, 145–146. [Google Scholar] [CrossRef]
- De Luca, C.; Zhou, Y.; Montanari, A.; Morea, V.; Oliva, R.; Besagni, C.; Bolotin-Fukuhara, M.; Frontali, L.; Francisci, S. Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 2009, 9, 408–417. [Google Scholar] [CrossRef]
- Conde, J.; Fink, G.R. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 1976, 73, 3651–3655. [Google Scholar] [CrossRef]
- De Luca, C.; Besagni, C.; Frontali, L.; Bolotin-Fukuhara, M.; Francisci, S. Mutations in yeasts mt tRNAs: Specific and general suppression by nuclear encoded tRNA interactors. Gene 2006, 377, 169–176. [Google Scholar] [CrossRef]
- Montanari, A.; Besagni, C.; de Luca, C.; Morea, V.; Oliva, R.; Tramontano, A.; Bolotin-Fukuhara, M.; Frontali, L.; Francisci, S. Yeast as a model of human mitochondrial tRNA base substitutions: Investigation on the molecular basis of respiratory defects. RNA 2008, 14, 275–283. [Google Scholar]
- Zhou, Y.F.; Pitayu, L.; Bolotin-Fukuhara, M. Human mitochondrial tRNA functionally works in yeast: Implications for mitochondrial diseases and evolution. Manuscript in preparation. 2014. [Google Scholar]
- Brasseur, G.; Lemesle-Meunier, D.; Reinaud, F.; Meunier, B. Qo site deficiency can be compensated by extragenic mutations in the hinge region of the Iron-Sulfur protein in the bc1 complex of Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 24203–24211. [Google Scholar]
- Schwimmer, C.; Lefebvre-Legendre, L.; Rak, M.; Devin, A.; Slonimski, P.P.; di Rago, J.P.; Rigoulet, M. Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast. J. Biol. Chem. 2005, 280, 30751–30759. [Google Scholar] [CrossRef]
- Rinaldi, T.; Lande, R.; Bolotin-Fukuhara, M.; Frontali, L. Additional copies of the mitochondrial EF-Tu and aspartyl-tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNAasp. Curr. Genet. 1997, 31, 494–496. [Google Scholar] [CrossRef]
- Montanari, A.; Zhou, Y.F.; Fazzi D’Orsi, M.; Bolotin-Fukuhara, M.; Frontali, L.; Francisci, S. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013, 527, 1–9. [Google Scholar] [CrossRef]
- Perli, E.; Giordano, C.; Tuppen, H.; Montopoli, M.; Montanari, A.; Orlandi, M.; Pisano, A.; Catanzaro, D.; Caparrotta, L.; Musumeci, B.; et al. Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic 4277T>C mitochondrial tRNAIle mutation causing hypertrophic cardiomyopathy. Hum. Mol. Genet. 2012, 21, 85–100. [Google Scholar] [CrossRef]
- Park, H.; Davison, E.; King, M. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNALeu(UUR) gene. RNA 2008, 14, 2407–2416. [Google Scholar] [CrossRef]
- Rorbach, J.; Yusoff, A.A.; Tuppen, H.; Abg-Kamaludin, D.P.; Chrzanowska-Lightowler, Z.M.; Taylor, R.W.; Turnbull, D.M.; McFarland, R.; Lightowlers, R.N. Overexpression of human mitochondrial valyl tRNAsynthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res. 2008, 36, 3065–3074. [Google Scholar] [CrossRef]
- Li, R.; Guan, M. Human Mitochondrial Leucyl-tRNA synthetase corrects Mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G Mutation, associated with Mitochondrial encephalomyopathy. Lactic Acidosis and Stroke-Like Symptoms and Diabetes. Mol. Cell. Biol. 2010, 30, 2147–2154. [Google Scholar] [CrossRef]
- Montanari, A.; de Luca, C.; Frontali, L.; Francisci, S. Aminoacyl-tRNA synthetases are multivalent suppressors of defects due to human equivalent mutations in yeast mt tRNA genes. Bioch. Biophys. Acta 2010, 1803, 1050–1057. [Google Scholar]
- Francisci, S.; Montanari, A.; de Luca, C.; Frontali, L. Peptides from aminoacyl-tRNA synthetases can cure the defects due to mutations in mt tRNA genes. Mitochondrion 2011, 11, 919–923. [Google Scholar] [CrossRef]
- Perli, Z.; Giordano, C.; Pisano, A.; Montanari, A.; Campese, A.F.; Reyes, A.; Ghezzi, D.; Nasca, A.; Tuppen, H.A.; Orlandi, M.; et al. The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells. EMBO Mol. Med. 2014. [Google Scholar] [CrossRef]
- Hornig-Do, H.T.; Montanari, A.; Rozanska, A.; Tuppen, H.; Almalki, A.A.; Abg-Kamaludin, D.P.; Frontali, L.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M. Human mitochondrial leucyltRNA synthetase can supress non cognate pathogenic mt tRNA mutations. EMBO Mol. Med. 2014. [Google Scholar] [CrossRef]
- Tarassov, I.; Kamenski, P.; Kolesnikova, O.; Karicheva, O.; Martin, R.P.; Krasheninnikov, I.A.; Entelis, N. Import of nuclear DNA-Encoded RNAs into mitochondria and mitochondrial translation. Cell Cycle 2007, 6, 2473–2477. [Google Scholar] [CrossRef]
- Salinas, T.; Duchêne, A.M.; Maréchal-Drouard, L. Recent advances in tRNA mitochondria import. Trends Biochem. Sci. 2008, 33, 320–329. [Google Scholar] [CrossRef]
- Rubio, M.A.; Hopper, A.K. Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip. Rev. RNA 2011, 2, 802–817. [Google Scholar] [CrossRef]
- Sieber, F.; Duchêne, A.M.; Maréchal-Drouard, L. Mitochondrial RNA import: From diversity of natural mechanisms to potential applications. Int. Rev. Cell Mol. Biol. 2011, 287, 145–190. [Google Scholar] [CrossRef]
- Martin, R.P.; Schneller, J.M.; Stahl, A.J.; Dirheimer, G. Study of yeast mitochondrial tRNAs by two-dimensional polyacrylamide gel electrophoresis: Characterization of isoaccepting species and search for imported cytoplasmic tRNAs. Nucleic Acids Res. 1977, 4, 3497–3510. [Google Scholar] [CrossRef]
- Martin, R.P.; Schneller, J.M.; Stahl, A.J.; Dirheimer, G. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 1979, 18, 4600–4605. [Google Scholar] [CrossRef]
- Tarassov, I.; Entelis, N.; Martin, R. Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases. EMBO J. 1995, 14, 3461–3471. [Google Scholar]
- Entelis, N.; Brandina, I.; Kamenski, P.; Krasheninnikov, I.A.; Martin, R.P.; Tarassov, I. A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisia. Genes Dev. 2006, 20, 1609–1620. [Google Scholar] [CrossRef]
- Kamenski, P.; Kolesnikova, O.; Jubenot, V.; Entelis, N.; Kraseninnikov, I.; Martin, R.P.; Tarassov, I. Evidence for an adaptation mechanism of mitochondrial translation via tRNA import from the cytosol. Mol. Cell 2007, 26, 625–637. [Google Scholar] [CrossRef]
- Entelis, N.; Kieffer, S.; Kolesnikova, O.A.; Martin, R.P.; Tarassov, I. Structural requirements of tRNALys for its import into yeast mitochondria. Proc. Natl. Acad. Sci. USA 1998, 95, 2838–2843. [Google Scholar]
- Kolesnikova, O.A.; Entelis, N.S.; Mireau, H.; Fox, T.D.; Martin, R.P.; Tarassov, I. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 2000, 289, 1931–1933. [Google Scholar] [CrossRef]
- Kolesnikova, O.A.; Entelis, N.S.; Jacquin-Becker, C.; Goltzene, F.; Chrzanowska-Lightowlers, Z.M.; Lightowlers, R.N.; Martin, R.P.; Tarassov, I. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum. Mol. Genet. 2004, 13, 2519–2534. [Google Scholar] [CrossRef]
- Karicheva, O.Z.; Kolesnikova, O.A.; Schirtz, T.; Vysokikh, M.Y.; Mager-Heckel, A.M.; Lombès, A.; Boucheham, A.; Krasheninnikov, I.A.; Martin, R.P.; Entelis, N.; et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res. 2011, 39, 8173–8186. [Google Scholar] [CrossRef]
- Magalhaes, P.; Andreu, A.; Schon, E. Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol. Biol. Cell 1998, 9, 2375–2382. [Google Scholar] [CrossRef]
- Doersen, C.; Guerrier-Takada, C.; Altman, S.; Attardi, G. Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J. Biol. Chem. 1985, 260, 5942–6009. [Google Scholar]
- Li, K.; Smagula, C.S.; Parsons, W.J.; Richardson, J.A.; Gonzalez, M.; Hager, H.K.; William, R.S. Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J. Cell Biol. 1994, 124, 871–882. [Google Scholar] [CrossRef]
- Kolesnikova, O.; Kazakova, H.; Comte, C.; Steinberg, S.; Kamenski, P.; Martin, R.P.; Tarassov, I.; Entelis, N. Selection of RNA aptamers imported into yeast and human mitochondria. RNA 2010, 16, 926–941. [Google Scholar] [CrossRef]
- Gowher, A.; Smirnov, A.; Tarassov, I.; Entelis, N. Induced tRNA import into human mitochondria: Implication of a host aminoacyl-tRNA-synthetase. PLoS One 2013, 8, e66228. [Google Scholar]
- Comte, C.; Tonin, Y.; Heckel-Mager, A.M.; Boucheham, A.; Smirnov, A.; Auré, K.; Lombès, A.; Martin, R.P.; Entelis, N.; Tarassov, I. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res. 2013, 41, 418–433. [Google Scholar] [CrossRef]
- Mahata, B.; Mukherjee, S.; Mishra, S.; Bandyopadhyay, A.; Adhya, S. Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 2006, 314, 471–474. [Google Scholar] [CrossRef]
- Rotig, A.; Appelkvist, E.L.; Geromel, V.; Chretien, D.; Kadhom, N.; Edery, P.; Lebideau, M.; Dallner, G.; Munnich, A.; Emster, L.; et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000, 356, 391–395. [Google Scholar] [CrossRef]
- Parkinson, M.H.; Schultz, J.B.; Giunti, P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J. Neurochem. 2013, 126, 125–141. [Google Scholar] [CrossRef]
- DiMauro, S.; Hirano, M.; Schon, E.A. Approaches to the treatment of mitochondrial diseases. Muscle Nerve 2006, 34, 265–283. [Google Scholar]
- Garrido-Madaver, J.; Cordero, M.D.; Monino, I.D.; Pereira-Arenas, S.; Lechuga-Vieco, A.V.; Cotan, D.; de al Mata, M.; Oropesa-Avila, M.; de Miguel, M.; Bautista Lorite, J.; et al. Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts, and cybrid models for the diseases. Br. J. Pharmacol. 2012, 167, 1311–1328. [Google Scholar] [CrossRef]
- Couplan, E.; Aiyar, R.S.; Kucharczyk, R.; Kabala, A.; Ezkurdia, N.; Gagneur, J.; St Onge, R.P.; Salin, B.; Soubigou, F.; Le Cann, M.; et al. A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc. Natl. Acad. Sci. USA 2011, 108, 11989–11994. [Google Scholar] [CrossRef]
- Lefebvre-Legendre, L.; Vaillier, J.; Benabdelhak, H.; Velours, J.; Slonimski, P.P.; di Rago, J.P. Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F(1)-ATPase in heat stress conditions. J. Biol. Chem. 2001, 276, 6789–6796. [Google Scholar]
- Tribouillard, D.; Gug, F.; Galons, H.; Bach, S.; Saupe, S.J.; Blondel, M. Antiprion drugs as chemical tools to uncover mechanisms of prion propagation. Prion 2007, 1, 48–52. [Google Scholar] [CrossRef]
- Tribouillard-Tanvier, D.; dos Reis, S.; Gug, F.; Voisset, C.; Béringue, V.; Sabate, R.; Kikovska, E.; Talarek, N.; Bach, S.; Hung, C.; et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008, 3, e2174. [Google Scholar] [CrossRef]
- Pitayu, L.; Baruffini, E.; Lodi, T.; Delahodde, A. Personal communication. Université Paris Sud, Institut de Génétique et Microbiologie. Batiment 400. 91405 Orsay Cedex France (P.L. and D.A.); Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, Parma, Italy (B.E. and L.T.). 2013. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bolotin-Fukuhara, M. Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases 2014, 2, 24-44. https://doi.org/10.3390/diseases2010024
Bolotin-Fukuhara M. Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases. 2014; 2(1):24-44. https://doi.org/10.3390/diseases2010024
Chicago/Turabian StyleBolotin-Fukuhara, Monique. 2014. "Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae" Diseases 2, no. 1: 24-44. https://doi.org/10.3390/diseases2010024
APA StyleBolotin-Fukuhara, M. (2014). Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases, 2(1), 24-44. https://doi.org/10.3390/diseases2010024