An Analysis of Primary Hyperparathyroidism in Individuals Diagnosed with Multiple Endocrine Neoplasia Type 2
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Genetic Findings: RET-Related Primary Hyperparathyroidism
3.2. The Clinical Presentation and Spectrum of Complications in MEN2-Related Primary Hyperparathyroidism
3.3. Parathyroidectomy in MEN2 Subjects
3.4. Histological Analysis of the Parathyroid Tumors
3.5. Imaging Assessment in Patients with MEN2-Associated Primary Hyperparathyroidism
3.6. Primary Hyperparathyroidism in MEN2 Versus Other Familial Syndromes
3.7. Medullary Thyroid Carcinoma in MEN2 Patients (The Data According to the Studies That Also Provided an Analysis of the Primary Hyperparathyroidism)
3.8. MEN2-Associated Pheochromocytoma (The Data According to the Studies That Also Provided an Analysis of the Primary Hyperparathyroidism)
4. Discussion
4.1. Inherited Forms of Primary Hyperparathyroidism
Primary Hyperparathyroidism in the Setting of MEN2
4.2. Surgery Candidates
4.3. Case Report-Focused Analysis
4.4. Limits and Further Expansion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATA | American Thyroid Association |
CI | confidence interval |
HR | hazard ratio |
IQR | interquartile range |
MEN | multiple endocrine neoplasia |
MTC | medullary thyroid carcinoma |
PC | pheochromocytoma |
PHPT | primary hyperparathyroidism |
PTx | parathyroidectomy |
PTH | parathormone |
SD | standard deviation |
References
- Palermo, A.; Tabacco, G.; Makras, P.; Zavatta, G.; Trimboli, P.; Castellano, E.; Yavropoulou, M.P.; Naciu, A.M.; Anastasilakis, A.D. Primary hyperparathyroidism: From guidelines to outpatient clinic. Rev. Endocr. Metab. Disord. 2024, 25, 875–896. [Google Scholar] [CrossRef] [PubMed]
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gillis, A.; Lindeman, B.; Chen, H.; Fazendin, J. Normocalcemic primary hyperparathyroidism: From pathophysiology to clinical management. Am. J. Surg. 2024, 235, 115812. [Google Scholar] [CrossRef] [PubMed]
- Cetani, F.; Dinoi, E.; Pierotti, L.; Pardi, E. Familial states of primary hyperparathyroidism: An update. J. Endocrinol. Investig. 2024, 47, 2157–2176. [Google Scholar] [CrossRef]
- English, K.A.; Lines, K.E.; Thakker, R.V. Genetics of hereditary forms of primary hyperparathyroidism. Hormones 2024, 23, 3–14. [Google Scholar] [CrossRef]
- Manea, M.M.; Dragos, D.; Ghenu, M.I.; Enache, I.I.; Stoican, I.C.; Ciulavu, C.; Vasiliu, O.; Sirbu, C.A.; Tuta, S. The Neurocardiogenic Impact of Ischemic Stroke: Intricacies of Cardiac Enzymes and the Vegetative System. Rom. J. Mil. Med. 2025, 128, 36–42. [Google Scholar] [CrossRef]
- Mitrica, M.; Vasiliu, O.; Plesa, A.; Sirbu, O.M. Multinodular and vacuolating neuronal tumor. Rom. J. Mil. Med. 2025, 128, 10–16. [Google Scholar] [CrossRef]
- Lauricella, E.; Chaoul, N.; D’Angelo, G.; Giglio, A.; Cafiero, C.; Porta, C.; Palmirotta, R. Neuroendocrine Tumors: Germline Genetics and Hereditary Syndromes. Curr. Treat. Options Oncol. 2025, 26, 55–71. [Google Scholar] [CrossRef]
- Balachandra, S.; Fazendin, J.; Chen, H. Complex Primary Hyperparathyroidism: Hereditary and Recurrent Disease. Surg. Clin. N. Am. 2024, 104, 811–823. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Benevento, E.; De Cicco, F.; Grossrubatscher, E.M.; Hasballa, I.; Tarsitano, M.G.; Centello, R.; Isidori, A.M.; Colao, A.; Pellegata, N.S.; et al. Multiple endocrine neoplasia type 4 (MEN4): A thorough update on the latest and least known men syndrome. Endocrine 2023, 82, 480–490. [Google Scholar] [CrossRef]
- Ababneh, E.; Nosé, V. Para This, Fibromin That: The Role of CDC73 in Parathyroid Tumors and Familial Tumor Syndromes. Surg. Pathol. Clin. 2023, 16, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mitrică, M.; Lorusso, L.; Badea, A.A.; Sîrbu, C.A.; Pleșa, A.; Stănescu, A.A.; Pleșa, F.C.; Sîrbu, O.M.; Munteanu, A.E. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. Medicina 2024, 60, 1699. [Google Scholar] [CrossRef]
- Walker, T.J.; Mulligan, L.M. Cellular mechanisms of RET receptor dysfunction in multiple endocrine neoplasia 2. Endocr. Relat. Cancer 2024, 32, e240187. [Google Scholar] [CrossRef]
- McDonnell, J.E.; Gild, M.L.; Clifton-Bligh, R.J.; Robinson, B.G. Multiple endocrine neoplasia: An update. Intern. Med. J. 2019, 49, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Huai, J.X.; Wang, F.; Zhang, W.H.; Lou, Y.; Wang, G.X.; Huang, L.J.; Sun, J.; Zhou, X.Q. Unveiling new chapters in medullary thyroid carcinoma therapy: Advances in molecular genetics and targeted treatment strategies. Front. Endocrinol. 2024, 15, 1484815. [Google Scholar] [CrossRef]
- Poturnajova, M.; Altanerova, V.; Kostalova, L.; Breza, J.; Altaner, C. Novel germline mutation in the transmembrane region of RET gene close to Cys634Ser mutation associated with MEN 2A syndrome. J. Mol. Med. 2005, 83, 287–295. [Google Scholar] [CrossRef]
- Greenberg, L.A. Multiple Endocrine Neoplasia Type 1, Type 2A, and Type 2B. Prim. Care 2024, 51, 483–494. [Google Scholar] [CrossRef]
- Romei, C.; Ciampi, R.; Casella, F.; Tacito, A.; Torregrossa, L.; Ugolini, C.; Basolo, F.; Materazzi, G.; Vitti, P.; Elisei, R. RET mutation heterogeneity in primary advanced medullary thyroid cancers and their metastases. Oncotarget 2018, 9, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- Giacché, M.; Tacchetti, M.C.; Agabiti-Rosei, C.; Torlone, F.; Bandera, F.; Izzi, C.; Agabiti-Rosei, E. Pheochromocytoma-Paraganglioma Syndrome: A Multiform Disease with Different Genotype and Phenotype Features. Biomedicines 2024, 12, 2385. [Google Scholar] [CrossRef]
- Nica, S.; Sionel, R.; Maciuca, R.; Csutak, O.; Ciobica, M.L.; Nica, M.I.; Chelu, I.; Radu, I.; Toma, M. Gender-Dependent Associations Between Digit Ratio and Genetic Polymorphisms, BMI, and Reproductive Factors. Rom. J. Mil. Med. 2025, 128, 78–86. [Google Scholar] [CrossRef]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Alevizaki, M.; Saltiki, K. Primary Hyperparathyroidism in MEN2 Syndromes. Recent Results Cancer Res. 2015, 204, 179–186. [Google Scholar] [CrossRef]
- Vasiliu, O.; Panea, C.A.; Mangalagiu, A.G.; Petrescu, B.M.; Cândea, C.A.; Manea, M.M.; Ciobanu, A.M.; Sîrbu, C.A.; Mitrică, M. Case Management of Delirium in Patients with Major Neurocognitive Disorders. Rom. J. Mil. Med. 2025, 128, 67–77. [Google Scholar] [CrossRef]
- Tonon, C.R.; Silva, T.A.A.L.; Pereira, F.W.L.; Queiroz, D.A.R.; Junior, E.L.F.; Martins, D.; Azevedo, P.S.; Okoshi, M.P.; Zornoff, L.A.M.; de Paiva, S.A.R.; et al. A Review of Current Clinical Concepts in the Pathophysiology, Etiology, Diagnosis, and Management of Hypercalcemia. Med. Sci. Monit. 2022, 28, e935821. [Google Scholar] [CrossRef]
- Cormier, C.; Koumakis, E. Bone and primary hyperparathyroidism. Jt. Bone Spine 2022, 89, 105129. [Google Scholar] [CrossRef]
- Anghel, D.; Ciobica, L.M.; Negru, M.M.; Jurcut, C.; Otlocan, L.; Coca, A. Bone mineral density and vitamin D levels in patients with rheumatoid arthritis. Osteoporos. Int. 2017, 28, S435–S436. [Google Scholar]
- Stanciu, S.; Enciu, C.; Raduta, I.; Stoicescu, D.; Anghel, A.; Anghel, D.; Olan, B.; Ciobica, L. The role of contrast-enhanced ultrasound in risk assessment of carotid atheroma. Rom. J. Mil. Med. 2016, 119, 9–11. [Google Scholar]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Cristina, E.V.; Alberto, F. Management of familial hyperparathyroidism syndromes: MEN1, MEN2, MEN4, HPT-Jaw tumour, Familial isolated hyperparathyroidism, FHH, and neonatal severe hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 861–875. [Google Scholar] [CrossRef]
- Aggarwal, P.; Gunasekaran, V.; Sood, A.; Mittal, B.R. Localization in primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2024, 39, 101967. [Google Scholar] [CrossRef]
- Iacobone, M.; Citton, M.; Viel, G.; Schiavone, D.; Torresan, F. Surgical approaches in hereditary endocrine tumors. Updates Surg. 2017, 69, 181–191. [Google Scholar] [CrossRef]
- Frye, C.C.; Brown, T.C.; Olson, J.A., Jr. Evaluation and Surgical Management of Multiple Endocrine Neoplasias. Surg. Clin. N. Am. 2024, 104, 909–928. [Google Scholar] [CrossRef]
- Al-Salameh, A.; Haissaguerre, M.; Tresallet, C.; Kuczma, P.; Marciniak, C.; Cardot-Bauters, C. Chapter 6: Syndromic primary hyperparathyroidism. Ann. Endocrinol. 2025, 86, 101695. [Google Scholar] [CrossRef]
- Romanet, P.; Coppin, L.; Molin, A.; Santucci, N.; Le Bras, M.; Odou, M.F. Chapter 5: The role of genetics in primary hyperparathyroidism. Ann. Endocrinol. 2025, 86, 101694. [Google Scholar] [CrossRef]
- Binter, T.; Baumgartner-Parzer, S.; Schernthaner-Reiter, M.H.; Arikan, M.; Hargitai, L.; Niederle, M.B.; Niederle, B.; Scheuba, C.; Riss, P. Does Genotype-Specific Phenotype in Patients with Multiple Endocrine Neoplasia Type 2 Occur as Current Guidelines Predict? Cancers 2024, 16, 494. [Google Scholar] [CrossRef]
- Figueiredo, A.A.; Saramago, A.; Cavaco, B.M.; Simões-Pereira, J.; Leite, V. Familial parathyroid tumours-comparison of clinical profiles between syndromes. J. Endocrinol. Investig. 2023, 46, 1799–1806. [Google Scholar] [CrossRef]
- Gasior, J.; Kelz, R.R.; Karakousis, G.C.; Fraker, D.L.; Wachtel, H. Primary Hyperparathyroidism in Young Adult Patients. Ann. Surg. Oncol. 2023, 30, 4156–4164. [Google Scholar] [CrossRef]
- Holm, M.; Vestergaard, P.; Poulsen, M.M.; Rasmussen, Å.K.; Feldt-Rasmussen, U.; Bay, M.; Rolighed, L.; Londero, S.; Pedersen, H.B.; Hahn, C.H.; et al. Primary Hyperparathyroidism in Multiple Endocrine Neoplasia Type 2A in Denmark 1930–2021: A Nationwide Population-Based Retrospective Study. Cancers 2023, 15, 2125. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Weber, F.; Brandenburg, T.; Führer-Sakel, D.; Dralle, H. Clinical presentation of MEN 2A in index vs. non-index patients. Endocrine 2023, 82, 450–455. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Brandenburg, T.; Führer-Sakel, D.; Weber, F.; Dralle, H. The Changing Face of Multiple Endocrine Neoplasia 2A: From Symptom-Based to Preventative Medicine. J. Clin. Endocrinol. Metab. 2023, 108, e734–e742. [Google Scholar] [CrossRef]
- Rosenblum, R.C.; Hirsch, D.; Grozinsky-Glasberg, S.; Benbassat, C.; Yoel, U.; Ishay, A.; Zolotov, S.; Bachar, G.; Banne, E.; Levy, S.; et al. Clinical characteristics of a large familial cohort with Medullary thyroid cancer and germline Cys618Arg RET mutation in an Israeli multicenter study. Front. Endocrinol. 2023, 14, 1268193. [Google Scholar] [CrossRef]
- Berber, E.; Akbulut, S.; Avci, S.; Isiktas, G. Comparison of Parathyroid Autofluorescence Signals in Different Types of Hyperparathyroidism. World J. Surg. 2022, 46, 807–812. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Weber, F.; Dralle, H. Medullary thyroid cancer and pheochromocytoma in MEN2A: Are there parent of origin effects on disease expression? Fam. Cancer 2022, 21, 473–478. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Weber, F.; Dralle, H. Sex differences in MEN 2A penetrance and expression according to parental inheritance. Eur. J. Endocrinol. 2022, 186, 469–476. [Google Scholar] [CrossRef]
- Milicevic, S.; Krajc, M.; Blatnik, A.; Peric, B. Medullary Thyroid Carcinoma and Associated Endocrinopathies in Slovenia from 1995 to 2021. Life 2022, 12, 1091. [Google Scholar] [CrossRef]
- Diwaker, C.; Sarathi, V.; Jaiswal, S.K.; Shah, R.; Deshmukh, A.; Thomas, A.E.; Prakash, G.; Malhotra, G.; Patil, V.; Lila, A.; et al. Hereditary medullary thyroid carcinoma syndromes: Experience from western India. Fam. Cancer 2021, 20, 241–251. [Google Scholar] [CrossRef]
- Larsen, L.V.; Mirebeau-Prunier, D.; Imai, T.; Alvarez-Escola, C.; Hasse-Lazar, K.; Censi, S.; Castroneves, L.A.; Sakurai, A.; Kihara, M.; Horiuchi, K.; et al. Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: An international multicenter study. Endocr. Connect. 2020, 9, 489–497. [Google Scholar] [CrossRef]
- Machens, A.; Elwerr, M.; Lorenz, K.; Weber, F.; Dralle, H. 100-Year evolution of precision medicine and surgery for multiple endocrine neoplasia type 2A. Endocrine 2020, 68, 368–376. [Google Scholar] [CrossRef]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Valea, A.; Carsote, M.; Moldovan, C.; Georgescu, C. Chronic autoimmune thyroiditis and obesity. Arch. Balk. Med. Union. 2018, 53, 64–69. [Google Scholar]
- Carsote, M.; Valea, A.; Dumitru, N.; Terzea, D.; Petrova, E.; Albu, S.; Buruiana, A.; Ghemigian, A. Metastases in daily endocrine practice. Arch. Balk. Med. Union 2016, 51, 476–480. [Google Scholar]
- Marini, F.; Giusti, F.; Brandi, M.L. Congenital primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2025, 39, 101982. [Google Scholar] [CrossRef] [PubMed]
- Răcătăianu, N.; Leach, N.; Bondor, C.I.; Mârza, S.; Moga, D.; Valea, A.; Ghervan, C. Thyroid disorders in obese patients. Does insulin resistance make a difference? Arch. Endocrinol. Metabol. 2017, 61, 575–583. [Google Scholar] [CrossRef]
- Das, L.; Dutta, P. Association of primary hyperparathyroidism with pituitary adenoma and management issues. Best Pract. Res. Clin. Endocrinol. Metab. 2025, 39, 101978. [Google Scholar] [CrossRef]
- Valea, A.; Ghervan, C.; Morar, A.; Pop, D.D.; Carsote, M.; Albu, S.E.; Georgescu, C.E.; Chiorean, A. Hashimoto’s thyroiditis and breast cancer: Coincidence or correlation? Arch. Balk. Med. Union 2016, 51, 129–132. [Google Scholar]
- Newey, P.J.; Hannan, F.M.; Wilson, A.; Thakker, R.V. Genetics of monogenic disorders of calcium and bone metabolism. Clin. Endocrinol. 2022, 97, 483–501. [Google Scholar] [CrossRef]
- De Sousa, S.M.C.; Carroll, R.W.; Henderson, A.; Burgess, J.; Clifton-Bligh, R.J. A contemporary clinical approach to genetic testing for heritable hyperparathyroidism syndromes. Endocrine 2022, 75, 23–32. [Google Scholar] [CrossRef]
- Mazarico-Altisent, I.; Capel, I.; Baena, N.; Bella-Cueto, M.R.; Barcons, S.; Guirao, X.; Pareja, R.; Muntean, A.; Arsentales, V.; Caixàs, A.; et al. Genetic testing for familial hyperparathyroidism: Clinical-genetic profile in a Mediterranean cohort. Front. Endocrinol. 2023, 14, 1244361. [Google Scholar] [CrossRef]
- Watanabe, A.; Wiseman, S.M. Multiple endocrine neoplasia type 4 & primary hyperparathyroidism: What the surgeon needs to know. Am. J. Surg. 2022, 224, 1017–1018. [Google Scholar] [CrossRef]
- Majer, A.D.; Hua, X.; Katona, B.W. Menin in Cancer. Genes 2024, 15, 1231. [Google Scholar] [CrossRef]
- Razavipour, S.F.; Harikumar, K.B.; Slingerland, J.M. p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Res. 2020, 80, 3451–3458. [Google Scholar] [CrossRef]
- Simonds, W.F.; Li, Y.; Jha, S. Genotype-Phenotype Correlations in the Hyperparathyroidism-Jaw Tumor Syndrome. J. Clin. Endocrinol. Metab. 2025, 110, dgae909. [Google Scholar] [CrossRef]
- Gopinath, S.; Ramaiyan, V. Molecular diagnostic approaches in detecting rearranged during transfection oncogene mutations in multiple endocrine neoplasia type 2. World J. Clin. Cases 2024, 12, 6436–6440. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, N.; Carsote, M.; Cocolos, A.; Petrova, E.; Olaru, M.; Dumitrache, C.; Ghemigian, A. The Link Between Bone Osteocalcin and Energy Metabolism in a Group of Postmenopausal Women. Curr. Health Sci. J. 2019, 45, 47–51. [Google Scholar] [CrossRef]
- Popa, F.L.; Diaconu, C.; Canciu, A.; Ciortea, V.M.; Iliescu, M.G.; Stanciu, M. Medical management and rehabilitation in posttraumatic common peroneal nerve palsy. Balneo PRM Res. J. 2022, 13, 496. [Google Scholar] [CrossRef]
- Jha, S.; Simonds, W.F. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr. Rev. 2023, 44, 779–818. [Google Scholar] [CrossRef] [PubMed]
- Tora, R.; Welch, J.; Sun, J.; Agarwal, S.K.; Bell, D.A.; Merino, M.; Weinstein, L.S.; Simonds, W.F.; Jha, S. Phenotypic Profiling and Molecular Mechanisms in Hyperparathyroidism-jaw Tumor Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 3165–3177. [Google Scholar] [CrossRef]
- Al-Salameh, A.; Cadiot, G.; Calender, A.; Goudet, P.; Chanson, P. Clinical aspects of multiple endocrine neoplasia type 1. Nat. Rev. Endocrinol. 2021, 17, 207–224. [Google Scholar] [CrossRef]
- Frank-Raue, K.; Rybicki, L.A.; Erlic, Z.; Schweizer, H.; Winter, A.; Milos, I.; Toledo, S.P.; Toledo, R.A.; Tavares, M.R.; Alevizaki, M.; et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 2011, 32, 51–58. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, Y.H.; Hong, N.; Won, D.; Rhee, Y. Germline Mutations Related to Primary Hyperparathyroidism Identified by Next-Generation Sequencing. Front. Endocrinol. 2022, 13, 853171. [Google Scholar] [CrossRef]
- Febrero, B.; Rodríguez, J.M.; Ríos, A.; Segura, P.; Pérez-Sánchez, B.; Torregrosa, N.; Hernández, A.M.; Parrilla, P. Prophylactic thyroidectomy in multiple endocrine neoplasia 2 (MEN2) patients with the C634Y mutation: A long-term follow-up in a large single-center cohort. Eur. J. Surg. Oncol. 2019, 45, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Haciyanli, S.G.; Karaisli, S.; Suataman, B.; Karahan, F.; Haciyanli, M. Primary Hyperparathyroidism with Thyroid Cancer: Clinicopathologic Features. Sisli Etfal Hastan. Tip Bul. 2022, 56, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Simonds, W.F. Clinical and Molecular Genetics of Primary Hyperparathyroidism. Horm. Metab. Res. 2020, 52, 578–587. [Google Scholar] [CrossRef]
- Saravana-Bawan, B.; Pasternak, J.D. Multiple endocrine neoplasia 2: An overview. Ther. Adv. Chronic Dis. 2022, 13, 20406223221079246. [Google Scholar] [CrossRef]
- Sahakian, N.; Castinetti, F.; Romanet, P.; Reznik, Y.; Brue, T. Updates on the genetics of multiple endocrine neoplasia. Ann. Endocrinol. 2024, 85, 127–135. [Google Scholar] [CrossRef]
- Mathiesen, J.S.; Effraimidis, G.; Rossing, M.; Rasmussen, Å.K.; Hoejberg, L.; Bastholt, L.; Godballe, C.; Oturai, P.; Feldt-Rasmussen, U. Multiple endocrine neoplasia type 2: A review. Semin. Cancer Biol. 2022, 79, 163–179. [Google Scholar] [CrossRef]
- Xu, B.; Viswanathan, K.; Ahadi, M.S.; Ahmadi, S.; Alzumaili, B.; Bani, M.A.; Baudin, E.; Behrman, D.B.; Capelletti, M.; Chau, N.G.; et al. Association of the Genomic Profile of Medullary Thyroid Carcinoma with Tumor Characteristics and Clinical Outcomes in an International Multicenter Study. Thyroid 2024, 34, 167–176. [Google Scholar] [CrossRef]
- Hensley, S.G.; Hu, M.I.; Bassett, R.L.; Ying, A.K.; Zafereo, M.E.; Perrier, N.D.; Busaidy, N.L.; Hyde, S.M.; Grubbs, E.G.; Waguespack, S.G. Pediatric Medullary Thyroid Carcinoma: Clinical Presentations and Long-Term Outcomes in 144 Patients Over 6 Decades. J. Clin. Endocrinol. Metab. 2024, 109, 2256–2268. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, Y.; Hwang, S.; Yoon, J.H.; Kim, G.H.; Yoo, H.W.; Choi, J.H. Impact of Early Diagnostic and Therapeutic Interventions and Clinical Course in Children and Adolescents with Multiple Endocrine Neoplasia Types 1 and 2. Exp. Clin. Endocrinol. Diabetes 2024, 132, 39–46. [Google Scholar] [CrossRef]
- Raue, F.; Frank-Raue, K. Update on Multiple Endocrine Neoplasia Type 2: Focus on Medullary Thyroid Carcinoma. J. Endocr. Soc. 2018, 2, 933–943. [Google Scholar] [CrossRef]
- Margraf, R.L.; Alexander, R.Z.; Fulmer, M.L.; Miller, C.E.; Coupal, E.; Mao, R. Multiple endocrine neoplasia type 2 (MEN2) and RET specific modifications of the ACMG/AMP variant classification guidelines and impact on the MEN2 RET database. Hum. Mutat. 2022, 43, 1780–1794. [Google Scholar] [CrossRef] [PubMed]
- Mucha, L.; Leidig-Bruckner, G.; Frank-Raue, K.; Bruckner, T.; Kroiss, M.; Raue, F.; German study group for rare thyroid cancer. Phaeochromocytoma in multiple endocrine neoplasia type 2: RET codon-specific penetrance and changes in management during the last four decades. Clin. Endocrinol. 2017, 87, 320–326. [Google Scholar] [CrossRef]
- Thosani, S.; Ayala-Ramirez, M.; Palmer, L.; Hu, M.I.; Rich, T.; Gagel, R.F.; Cote, G.; Waguespack, S.G.; Habra, M.A.; Jimenez, C. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 2013, 98, E1813–E1819. [Google Scholar] [CrossRef] [PubMed]
- Machens, A.; Lorenz, K.; Dralle, H. Peak incidence of pheochromocytoma and primary hyperparathyroidism in multiple endocrine neoplasia 2: Need for age-adjusted biochemical screening. J. Clin. Endocrinol. Metab. 2013, 98, E336–E345. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Qiu, Y.; Zhang, X.; Qian, Y.; Xu, J. Unexpected pheochromocytoma leading to cardiac arrest during the perioperative period: A case report and literature review. BMC Anesthesiol. 2024, 24, 463. [Google Scholar] [CrossRef]
- Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr.; Endocrine Society. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef]
- Ungureanu, S.; Şipitco, N.; Alexa, Z.; Gonţa, V.; Bujac, M.; Parnov, M.; Romanenco, R. MEN 2A syndrome-Multiple endocrine neoplasia with autosomal dominant transmission. Int. J. Surg. Case Rep. 2020, 73, 141–145. [Google Scholar] [CrossRef]
- Łokaj, M.; Szewc, M.; Forma, A.; Szymańska, M.; Lubikowski, J.; Prowans, P.; Sitarz, R. Simultaneous unilateral laparoscopic adrenalectomy for pheochromocytoma and thyroidectomy in MEN 2A and MEN 2B syndrome. Endokrynol. Pol. 2022, 73, 383–384. [Google Scholar] [CrossRef]
- Alevizaki, M. Management of hyperparathyroidism (PHP) in MEN2 syndromes in Europe. Thyroid Res. 2013, 6 (Suppl. S1), S10. [Google Scholar] [CrossRef]
- Soto-Pedre, E.; Newey, P.J.; Leese, G.P. Stable Incidence and Increasing Prevalence of Primary Hyperparathyroidism in a Population-based Study in Scotland. J. Clin. Endocrinol. Metab. 2023, 108, e1117–e1124. [Google Scholar] [CrossRef]
- Newey, P.J. Hereditary Primary Hyperparathyroidism. Endocrinol. Metab. Clin. N. Am. 2021, 50, 663–681. [Google Scholar] [CrossRef]
- Popa, F.L.; Stanciu, M.; Banciu, A.; Berteanu, M. Association between low bone mineral density, metabolic syndrome and sex steroids deficiency in men. Acta Endocrinol.-Buchar. 2016, 12, 418–422. [Google Scholar] [CrossRef]
- Răcătăianu, N.; Leach, N.V.; Bolboacă, S.D.; Soran, M.L.; Opriş, O.; Dronca, E.; Valea, A.; Ghervan, C. Interplay between metabolic and thyroid parameters in obese pubertal children. Does visceral adipose tissue make the first move? Acta Clin. Belg. 2021, 76, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, M.; Bera, L.G.; Popescu, M.; Grosu, F.; Popa, L.F. Hashimoto’s thyroiditis associated with thyroid adenoma with Hurthle cells-case report. Rom. J. Morphol. Embryol. 2017, 58, 241–248. [Google Scholar]
- Magalhães, P.K.; Antonini, S.R.; de Paula, F.J.; de Freitas, L.C.; Maciel, L.M. Primary hyperparathyroidism as the first clinical manifestation of multiple endocrine neoplasia type 2A in a 5-year-old child. Thyroid 2011, 21, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, G.J.; Buła, G.; Żądło, D.; Gawrychowska, A.; Gawrychowski, J. Primary hyperparathyroidism. Endokrynol. Pol. 2020, 71, 260–270. [Google Scholar] [CrossRef]
- Clarke, B.L. Asymptomatic Primary Hyperparathyroidism. Front. Horm. Res. 2019, 51, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Cusano, N.E.; Cetani, F. Normocalcemic primary hyperparathyroidism. Arq. Endocrinol. Metabol. 2022, 66, 666–677. [Google Scholar] [CrossRef]
- Muñoz de Nova, J.L.; Sampedro-Nuñez, M.; Huguet-Moreno, I.; Marazuela Azpiroz, M. A practical approach to normocalcemic primary hyperparathyroidism. Endocrine 2021, 74, 235–244. [Google Scholar] [CrossRef]
- Popa, F.L.; Stanciu, M.; Bighea, A.; Berteanu, M.; Totoianu, I.G.; Rotaru, M. Decreased serum levels of sex steroids associated with osteoporosis in a group of Romanian male patients. Rev. Romana Med. Lab. 2016, 24, 75–82. [Google Scholar] [CrossRef]
- Meriam, H.; Kaaroud, H.; Karray, R.; Ben Hamida, F.; Bouzid, K.; Abderrahim, E. Recurrent Urolithiasis Revealing Primary Hyperparathyroidism in a Nephrology Department. Case Rep. Nephrol. 2024, 2024, 1265364. [Google Scholar] [CrossRef]
- Misgar, R.A.; Bhat, M.H.; Rather, T.A.; Masoodi, S.R.; Wani, A.I.; Bashir, M.I.; Wani, M.A.; Malik, A.A. Primary hyperparathyroidism and pancreatitis. J. Endocrinol. Investig. 2020, 43, 1493–1498. [Google Scholar] [CrossRef]
- Desmedt, V.; Desmedt, S.; D’heygere, E.; Vereecke, G.; Van Moerkercke, W. Hypercalcemia induced pancreatitis as a rare presentation of primary hyperparathyroidism. Acta Gastroenterol. Belg. 2021, 84, 367–370. [Google Scholar] [CrossRef]
- Dandurand, K.; Ali, D.S.; Khan, A.A. Primary Hyperparathyroidism: A Narrative Review of Diagnosis and Medical Management. J. Clin. Med. 2021, 10, 1604. [Google Scholar] [CrossRef]
- El-Hajj Fuleihan, G.; Chakhtoura, M.; Cipriani, C.; Eastell, R.; Karonova, T.; Liu, J.M.; Minisola, S.; Mithal, A.; Moreira, C.A.; Peacock, M.; et al. Classical and Non-classical Manifestations of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2330–2350. [Google Scholar] [CrossRef]
- Kanis, J.A.; Harvey, N.C.; Liu, E.; Vandenput, L.; Lorentzon, M.; McCloskey, E.V.; Bouillon, R.; Abrahamsen, B.; Rejnmark, L.; Johansson, H.; et al. Primary hyperparathyroidism and fracture probability. Osteoporos. Int. 2023, 34, 489–499. [Google Scholar] [CrossRef]
- Iwanowska, M.; Kochman, M.; Szatko, A.; Zgliczyński, W.; Glinicki, P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 11639. [Google Scholar] [CrossRef]
- Popa, F.L.; Boicean, L.C.; Iliescu, M.G.; Stanciu, M. The importance of association between sex steroids deficiency, reduction of bone mineral density and falling risk in men with implications in medical rehabilitation. Balneo PRM Res. J. 2021, 12, 318–322. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Silverberg, S.J.; Bandeira, F.; Cetani, F.; Chandran, M.; Cusano, N.E.; Ebeling, P.R.; Formenti, A.M.; Frost, M.; Gosnell, J.; et al. Management of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2391–2403. [Google Scholar] [CrossRef]
- Cetani, F.; Saponaro, F.; Borsari, S.; Marcocci, C. Familial and Hereditary Forms of Primary Hyperparathyroidism. Front. Horm. Res. 2019, 51, 40–51. [Google Scholar] [CrossRef]
- Giusti, F.; Cavalli, L.; Cavalli, T.; Brandi, M.L. Hereditary hyperparathyroidism syndromes. J. Clin. Densitom. 2013, 16, 69–74. [Google Scholar] [CrossRef]
- Jayasinghe, R.; Basnayake, O.; Jayarajah, U.; Seneviratne, S. Management of medullary carcinoma of the thyroid: A review. J. Int. Med. Res. 2022, 50, 3000605221110698. [Google Scholar] [CrossRef]
- Laganà, M.; Cremaschi, V.; Alberti, A.; Vodopivec Kuri, D.M.; Cosentini, D.; Berruti, A. The Evolving Treatment Landscape of Medullary Thyroid Cancer. Curr. Treat. Options Oncol. 2023, 24, 1815–1832. [Google Scholar] [CrossRef]
- Shaghaghi, A.; Salari, A.; Jalaeefar, A.; Shirkhoda, M. Management of lymph nodes in medullary thyroid carcinoma: A review. Ann. Med. Surg. 2022, 81, 104538. [Google Scholar] [CrossRef]
- Torresan, F.; Censi, S.; Pennelli, G.; Galuppini, F.; Mian, C.; Iacobone, M. Prophylactic and Early Thyroidectomy in RET Germline Mutation Carriers in Pediatric and Adult Population: Long-Term Outcomes of a Series of 63 Patients. Cancers 2022, 14, 6226. [Google Scholar] [CrossRef]
- Machens, A.; Elwerr, M.; Lorenz, K.; Weber, F.; Dralle, H. Long-term outcome of prophylactic thyroidectomy in children carrying RET germline mutations. Br. J. Surg. 2018, 105, e150–e157. [Google Scholar] [CrossRef]
- Garcés Visier, C.; Espinoza Vega, M.; Guillén Redondo, P.; Ollero Fresno, J.C.; Souto Romero, H.; Luis Huertas, A.; Espinosa Góngora, R.; Rico Espiñeira, C.; Bautista, F.J.; Alonso Calderón, J.L. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A in children: A single centre experience. J. Pediatr. Endocrinol. Metab. 2019, 32, 889–893. [Google Scholar] [CrossRef]
- Rocke, D.J.; Mulder, H.; Cyr, D.; Kahmke, R.; Lee, W.T.; Puscas, L.; Schulz, K.; Witsell, D.L. The effect of lateral neck dissection on complication rate for total thyroidectomy. Am. J. Otolaryngol. 2020, 41, 102421. [Google Scholar] [CrossRef]
- Campbell, J.C.; Lee, H.J.; Cannon, T.Y.; Kahmke, R.R.; Lee, W.T.; Puscas, L.; Rocke, D.J. Lateral neck dissection surgeon volume and complications in head and neck endocrine malignancy. Gland. Surg. 2023, 12, 917–927. [Google Scholar] [CrossRef]
- Deng, J.; Wulff-Burchfield, E.M.; Murphy, B.A. Late Soft Tissue Complications of Head and Neck Cancer Therapy: Lymphedema and Fibrosis. J. Natl. Cancer Inst. Monogr. 2019, 2019, lgz005. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Waśniewska-Okupniak, E.; Banaszewski, J.; Pabiszczak, M.; Piorunek, T. Evaluation of outcomes after reoperative neck dissection due to thyroid cancer. Contemp. Oncol. 2014, 18, 268–272. [Google Scholar] [CrossRef]
- Kiernan, C.M.; Grubbs, E.G. Surgical Management of Multiple Endocrine Neoplasia 1 and Multiple Endocrine Neoplasia 2. Surg. Clin. N. Am. 2019, 99, 693–709. [Google Scholar] [CrossRef]
- Kavazis, C.; Romanidis, K.; Pitiakoudis, M.; Kesisoglou, I.; Laskou, S.; Sapalidis, K. The role of prophylactic parathyroidectomy during thyroidectomy for MTC in patients with MEN2A syndrome. Folia Med. 2023, 65, 720–727. [Google Scholar] [CrossRef]
- Yoshida, S.; Imai, T.; Kikumori, T.; Wada, M.; Sawaki, M.; Takada, H.; Yamada, T.; Sato, S.; Sassa, M.; Uchida, H.; et al. Long term parathyroid function following total parathyroidectomy with auto-transplantation in adult patients with MEN2A. Endocr. J. 2009, 56, 545–551. [Google Scholar] [CrossRef]
- Moley, J.F.; Skinner, M.; Gillanders, W.E.; Lairmore, T.C.; Rowland, K.J.; Traugott, A.L.; Jin, L.X.; Wells, S.A., Jr. Management of the Parathyroid Glands During Preventive Thyroidectomy in Patients with Multiple Endocrine Neoplasia Type 2. Ann. Surg. 2015, 262, 641–646. [Google Scholar] [CrossRef]
- Tonelli, F.; Giudici, F.; Marcucci, T.; Cavalli, T.; Spini, S.; Gheri, R.G.; Brandi, M.L. Surgery in MEN 2A Patients Older Than 5 Years with Micro-MTC: Outcome at Long-Term Follow-Up. Otolaryngol. Head. Neck Surg. 2016, 155, 787–789. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, J.; Sun, W.Y. Recurrent hyperparathyroidism due to proliferation of autotransplanted parathyroid tissue in a multiple endocrine neoplasia type 2A patient. Ann. Surg. Treat. Res. 2016, 91, 145–148. [Google Scholar] [CrossRef]
- Twigt, B.A.; Scholten, A.; Valk, G.D.; Rinkes, I.H.; Vriens, M.R. Differences between sporadic and MEN related primary hyperparathyroidism; clinical expression, preoperative workup, operative strategy and follow-up. Orphanet J. Rare Dis. 2013, 8, 50. [Google Scholar] [CrossRef]
- Scholten, A.; Schreinemakers, J.M.; Pieterman, C.R.; Valk, G.D.; Vriens, M.R.; Borel Rinkes, I.H. Evolution of surgical treatment of primary hyperparathyroidism in patients with multiple endocrine neoplasia type 2A. Endocr. Pract. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Perrier, N.; Lang, B.H.; Farias, L.C.B.; Poch, L.L.; Sywak, M.; Almquist, M.; Vriens, M.R.; Yeh, M.W.; Shariq, O.; Duh, Q.Y.; et al. Surgical Aspects of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2373–2390. [Google Scholar] [CrossRef]
- Pace-Asciak, P.; Russell, J.; Solorzano, C.; Berber, E.; Singer, M.; Shaha, A.R.; Khafif, A.; Angelos, P.; Nixon, I.; Tufano, R.P. The utility of parathyroid autofluorescence as an adjunct in thyroid and parathyroid surgery 2023. Head Neck 2023, 45, 3157–3167. [Google Scholar] [CrossRef]
- Kiernan, C.M.; Thomas, G.; Patel, A.; Fan, R.; Ye, F.; Willmon, P.A.; Solórzano, C.C. Does the Use of Probe-based Near-infrared Autofluorescence Parathyroid Detection Benefit Parathyroidectomy?: A Randomized Single-center Clinical Trial. Ann. Surg. 2023, 278, 549–558. [Google Scholar] [CrossRef]
- Frey, S.; Bannani, S.; Caillard, C.; Le Bras, M.; Drui, D.; Ansquer, C.; Guillot, P.; Le Thuaut, A.; Mirallié, E. Parathyroid near-infrared autofluorescence use for parathyroidectomy in mild primary hyperparathyroidism: Results from a randomized monocentric trial. Surgery 2025, 177, 108878. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.; Jung, J.; Kim, S.; Kim, S.W.; Hwang, S.H. Near-infrared autofluorescence-based parathyroid glands identification in the thyroidectomy or parathyroidectomy: A systematic review and meta-analysis. Langenbecks Arch. Surg. 2022, 407, 491–499. [Google Scholar] [CrossRef]
- Pipernea, R.; Popa, F.L.; Ciortea, V.M.; Irsay, L.; Ungur, R.A.; Pintea, A.L.; Iliescu, M.G.; Cipăian, R.C.; Stanciu, M. The role of rehabilitation and anabolic treatment in severe osteoporosis associated with significant vitamin D deficiency–case report. Balneo PRM Res. J. 2023, 14, 539. [Google Scholar] [CrossRef]
- La Greca, A.; Dawes, D.; Albuja-Cruz, M.; Raeburn, C.; Axell, L.; Ku, L.; Klein, C.; Marshall, C.; Fishbein, L. MEN2 phenotype in a family with germline heterozygous rare RET K666N variant. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 24-0009. [Google Scholar] [CrossRef]
- Jones, J.; Mann, G.N.; Chaudhuri, A.; Ramos-Santillan, V. Diagnostic and Surgical Challenges Associated With Sporadic Multiple Endocrine Neoplasia 2A Presenting as Non-syndromic Primary Hyperparathyroidism. Am. Surg. 2024, 90, 1753–1755. [Google Scholar] [CrossRef]
- Kim, M.; Aploks, K.; Vargas-Pinto, S.; Dong, X. RET T244I Germline Variant Mutation in a Patient with Pancreatic Paraganglioma and Primary Hyperparathyroidism. Int. J. Endocrinol. Metab. 2022, 20, e121056. [Google Scholar] [CrossRef]
- Brown, S.J.; Riconda, D.L.; Zheng, F.; Jackson, G.L.; Suo, L.; Robbins, R.J. Features of Multiple Endocrine Neoplasia Type 1 and 2A in a Patient with Both RET and MEN1 Germline Mutations. J. Endocr. Soc. 2020, 4, bvaa020. [Google Scholar] [CrossRef]
- Giani, C.; Ramone, T.; Romei, C.; Ciampi, R.; Tacito, A.; Valerio, L.; Agate, L.; Ugolini, C.; Marinò, M.; Basolo, F.; et al. A New MEN2 Syndrome with Clinical Features of Both MEN2A and MEN2B Associated with a New RET Germline Deletion. Case Rep. Endocrinol. 2020, 2020, 4147097. [Google Scholar] [CrossRef]
First Author Year of Publication Reference Number | Study Design and Studied Population | Prevalence of PHPT Among MEN2 Patients |
---|---|---|
Binter 2024 [35] | Retrospective cross-sectional single-center study N = 158 with MEN2 Median (min, max) age = 53 (3–91) y N1 = 13 with PHPT Median (min, max) age at PTx = 33 (14, 72) | 8.22% (13/158) |
Figueiredo 2023 [36] | Retrospective analysis N = 48 with familial form of PHPT Mean ± SD age = 40 ± 15.5 y F:M = 24:24 (50% females) N1 = 11 (22.9%) with PHPT due to MEN2 Age at PHPT diagnosis (mean ± SD) = 43.9 ± 19.2 y Age at first manifestation (mean ± SD) = 31.3 ± 19.5 y F:M = 6:5 (54.5% females) | NA |
Gasior 2023 [37] | Retrospective study N = 3889 with PHPT who underwent PTx Age, mean ± SD = 59 ± 13 y F:M = 3000:889 (77.1% females) N1 = 5 (0.12%) with MEN2 Age, mean ± SD = 33.4 ± 10.6 y F:M = 4:1 (80% females) | NA |
Holm 2023 [38] | Population-based retrospective study N = 204 with MEN2 N1 = 16 with PHPT due to MEN2 Age at MEN2 diagnosis, median (IQR) = 42 (4–82) y Age at PHPT diagnosis, median (IQR) = 45 (21–79) y F:M = 5:11 (31.25% females) | 7.84% (16/204) |
Machens 2023 [39] | Cross-sectional study N = 602 MEN2 carriers F:M = 341:261 (56.64% females) N1 = 156 index cases N2 = 446 non-index-patients Mean (95% CI) age at PTx: N1 vs. N2: 40.9. (33.7–48.0) vs. 36.4 (29.3–43.4), p = 0.348 N3 = 31 with MEN2 and PHPT (14 N1 and 17 N2) | N1 vs. N2: 9% (14/156) vs. 3.8% (17/446), p = 0.019 |
Machens 2023 [40] | Retrospective observational study N = 604 with MEN2 who underwent surgery for MEN2 High-risk (N1 = 237) vs. moderate-high risk (N2 = 165) vs. low risk (N3 = 202) pathogenic variants: Age at most recent follow-up, median (IQR): 26 (10.5–40) vs. 30 (11.5–49.5) vs. 43 y, p < 0.001 N4 = 32 with PHPT and MEN2 N4 out of N1 vs. N2 vs. N3: Age at PTx, median (IQR): 37 (25–46) vs. 48.5 (35.3–62.5) vs. 43 y, p = 0.270 F:M = 130:107 (54.9% females) vs. 97:68 (58.6% females) vs. 114:86 (57.4% females), p = 0.720 | Prevalence of PHPT, according to pathogenic variant risk category: High risk: 11.4% (27/235) Moderate-high risk: 2.4% (4/165) Low risk: 0.5% (1/202) p < 0.001 PHPT by pathogenic variants by year: ≤1950 vs. 1951–1960 vs. 1961–1970 vs. 1971–1980 vs. 1981–1990 vs. 1991–2000 vs. 2001–2010 vs. 2011–2020: High risk: 42% vs. 20% vs. 23% vs. 3% vs. 3% vs. 6% vs. 0% vs. 0%, p < 0.001 Moderate-high risk: 3% vs. 9% vs. 5% vs. 0% vs. 0% vs. 0% vs. 0% vs. 0%, p = 0.540 Low risk: 0% vs. 0% vs. 0% vs. 4% vs. 0% vs. 0% vs. 0% vs. 0% |
Rosenblum 2023 [41] | Retrospective multicenter study N = 50 with MEN2 and MTC N1 = 31 with p.Cys618Arg N2 = 15 with p.Cys634Arg/Thr/Tyr Age at MTC surgery, mean ± SD = 25.7 ± 10.9 vs. 31.3 ± 17.5 y, p = 0.190 N3 = 6 with PHPT | N: 8.33% (6/50) N1: 3.2% (1/31) N2: 33.3% (5/15) N1 vs. N2: p = 0.010 |
Berber 2022 [42] | Retrospective analysis N = 183 with PHPT who underwent PTx N2 = 4 (48%) with PHPT due to MEN2 | NA |
Machens 2022 [43] | Retrospective analysis N = 169 carriers of RET missesense pathogenic variants N1 = 90 with affected mother F:M = 53:37 (59% females) Age at most recent follow-up, median (IQR) = 14 (7–34) y N2 = 79 with affected father F:M = 45:34 (57% females) Age at most recent follow-up, median (IQR) = 12 (6–25) y N3 = 14 with PHPT (4 in N1, 10 in N2) F:M = 6:8 (42.85% females) | N1 vs. N2: 4% (4/90) vs. 13% (10/59), p = 0.090 F vs. M: N1: 6% (3/53) vs. 3% (1/37), p = 0.641 N2: 7% (3/45) vs. 21% (7/34), p = 0.090 |
Machens 2022 [44] | Observational study N = 578 RET carriers who underwent surgery for MEN2 related tumors N1 = 236 with affected mother F:M = 141:95 (60% females) Age at most recent follow-up, median (IQR): 23 (10, 36) y N2 = 169 with affected father F:M = 94:75 (56% females) Age at most recent follow-up, median (IQR): 24 (10, 38) y N3 = 29 carriers with PHPT (6 in N1, 11 in N2) | 5% (29/578) N1 vs. N2: 3% (6/236) vs. 7% (11/169), p = 0.076Risk of PHPT: Offspring sex M vs. F: HR (95% CI) = 1.0 (0.4–2.6), p = 0.960 Index vs. non-index-patients: HR (95% CI) = 1.2 (0.4–3.6), p = 0.758 Parental inheritance father vs. mother: HR (95% CI) = 3.4 (1.1–10.1), p = 0.029 |
Milicevic 2022 [45] | Retrospective analysis N = 266 with MTC and relatives N1 = 208 with MTC 21.6% (45/208) RET positive, 64.4% (134/208) RET negative, 4.8% (10/208) with RET variant of unknown significance, and 9.1% (19/208) without genetic testing F:M = 110:98 (52.9% females) Mean ±SD age at diagnosis in positive vs. RET negative: 42 ± 19 y vs. 59.8 ± 13.9 y, p < 0.001 N2 = 67 positive individuals, pertaining to 21 families, out of 103 tested individuals (MTC patients and family members) N3 = 21 with PHPT and MEN2 | 31.34% (21/67) |
Diwaker 2021 [46] | Retrospective study N = 97 with MTC N1 = 46 with hereditary MTC [F:M = 22:24 (48% females) Age at MTC diagnosis, mean ± SD = 30.15 ± 15.3 y] N2 = 51 with sporadic MTC [F:M = 30:21 (59% females) Age at MTC diagnosis, mean ± SD = 40.09 ± 14.78 y] N3 = 37 with MTC due to MEN2 [F:M = 20:17 (54% females)] N4 = 14 index cases with MEN2 [F:M = 11:14 (44% females) Age at MTC diagnosis, mean ± SD = 35.3 ± 11.9 y] N5 = 12 diagnosed by familial screening [F:M = 9:3 (75% females) Age at MTC diagnosis, mean ± SD = 28.3 ± 19.8 y] Age at MTC diagnosis: N2 vs. N1 p < 0.05, N2 vs. N4 p < 0.05, and N2 vs. N5 p < 0.05 N6 = 7 with PHPT due to MEN2 | In N3: 19% (7/37), with F:M = 4:3 |
Larsen 2020 [47] | International multicenter retrospective study N = 1085 index cases with MEN2 N1 = 10 with PHPT as first manifestation F:M = 8:2 (80% females) Age at PHPT diagnosis, median (IQR) = 34.5 (14–68) y | PHPT as first manifestation: 0.9% (10/1085) |
Machens 2020 [48] | Cross-sectional study N = 213 RET pathogenic variant p.Cys634 carriers F:M = 118:95 (55.4% females) Age at last follow-up, median (IQR) = 26 (11–40) y N1 = 23 with PHPT Age at PTx, median (IQR) = 39 (26–46) y | 10.8% (23/213) 1922–1950 vs. 1951–1960 vs. 1961–1970 vs. 1971–1980 vs. 1981–1990 vs. 1991–2000 vs. 2001–2010 PHPT: 41% vs. 22% vs. 21% vs. 0% vs. 3% vs. 3% vs. 0%, p < 0.001 |
Reference | Main Findings * |
---|---|
[35] |
p.Cys611Phe/Gly/Arg/Ser/Tyr: 4% (1/25) p.Cys630Arg/Tyr: 100% (1/1) p.Val804Met/Leu: 7.1% (4/56)
p.Cys611Phe/Gly/Arg/Ser/Tyr: 23 y p.Cys630Arg/Tyr: 23 y p.Val804Met/Leu: 59.5 (30–79) y |
[36] |
p.Cys634Arg: 4 p.Cys634Thr: 2 |
[38] |
p.Cys611Tyr: 50% (8/16) p.Cys618Phe: 6.25% (1/16) p.Leu790Phe: 6.25% (1/16)
p.Cys611Tyr: 37.5% (3/8) p.Cys618Phe: 0% p.Leu790Phe: 0%
|
[39] |
N2: 8.06% (15/186)
N2: 1.56% (2/128)
N2: (0/132)
N2: 34.7 (27.2–42.3) y p = 0.370
N2: 48.5 (4.0–93.0) y p = 0.980
|
[40] |
p.Cys609/611/618/620/630Arg/Gly/Phe/Ser/Thy (Moderate-high risk): 2.4% (4/235) p.Glu768Asp, p.Leu790Phe, p.Val804Leu, p.Val804Met, p.Ser891.Ala (Low risk): 0.5% (1/235) p < 0.001
p.Cys609/611/618/620/630Arg/Gly/Phe/Ser/Thy (Moderate-high risk): 48.5 (35.3–62.5) y p.Glu768Asp, p.Leu790Phe, p.Val804Leu, p.Val804Met, p.Ser891.Ala (Low risk): 43 y p = 0.270
High-risk: 42% vs. 20% vs. 23% vs. 3% vs. 3% vs. 6% vs. 0% vs. 0%, p < 0.001 Moderate-high risk: 3% vs. 9% vs. 5% vs. 0% vs. 0% vs. 0% vs. 0% vs. 0%, p = 0.540 Low-risk: 0% vs. 0% vs. 0% vs. 4% vs. 0% vs. 0% vs. 0% vs. 0%, p = 0.441 Age at PTx: from 43.5 (38.5-54.5) to 16.5 y in high-risk pathogenic variants |
[41] |
p.Cys634Arg/Thr/Tyr: 33.3% (5/15) p = 0.010 |
[43] |
p.Cys634Tyr: 28.4% (48/169) p.Cys634Phe 18.3% (31/169) p.Cys634Ser: 8.9% (15/169) p.Cys634Gly: 7.1% (12/169) |
[45] |
p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 29.4% (5/17) p.Cys618Phen/Arg/Ser: 4.5% (1/22) p.Leu790Phe: 10.5% (2/19) p.Val804Met: 0% p.Ser804Ala: 0% |
[47] |
p.Cys634Arg: 40% (4/10) p.Cys611Tyr: 10% (1/10) p.Cys620Arg: 10% (1/10) p.Glu768Asp: 10% (1/10) p.Cys618Phe: 10% (1/10)
|
[48] |
p.Cys634Tyr: 25.4% (54/213) p.Cys634Phe: 25.4% (54/213) p.Cys634Gly: 8% (17/213) p.Cys634Ser: 7.5% (16/213) p.Cys634Trp: 0.5% (1/213) p.Cys634HisGluLeuCys: 2.3% (5/213) |
Reference | Main Findings Regarding PHPT Symptoms * |
---|---|
[36] | Nephrolithiasis: 18.2% (2/11) Osteopenia/Osteoporosis: 9.1% (1/11) Chronic kidney disease: 9.1% (1/11) |
[37] | Nephrolithiasis: 0% Osteopenia/Osteoporosis: 0% Non-specific symptoms: 20% (1/5) |
[38] | Asymptomatic: 75% (12/16) Osteoporosis: 12.5% (2/16) Polydipsia: 12.5% (2/16) Nephrolithiasis Polyuria Nausea Prevalence of symptomatic PHPT by pathogenic variant: p.Cys634Arg: 16.67% (1/6) p.Cys611Tyr: 37.5% (3/8) p.Cys618Phe: 0% p.Leu790Phe: 0% |
[46] | Nephrolithiasis: 28.57% (2/7) Pancreatitis: 14.28% (1/7) |
[47] | Nephrolithiasis: 80% (8/10) Polyuria: 10% (1/10) Synchronous MTC in 80% (8/10) + Metachronus MTC in 10% (1/10) |
Reference | Prevalence of Surgical Treatment and Age at PTx * | Surgical Technique | Complications and Outcome |
---|---|---|---|
[36] | Underwent PTx: 72.7% (8/11) | Selective resection: 100% (8/8) | PHPT persistence: 0% PHPT recurrence: 12.5% (1/8) |
[37] | Underwent PTx: 100% (5/5) | Bilateral neck exploration: 100% (5/5) | NA |
[38] | Underwent PTx: 81% (13/16) | Subtotal PTx: 69% (9/13), out of which subtotal PTx with auto-transplantation in 3/9 Selective PTx: 23% (3/13) Bilateral neck exploration: 8% (1/13) | PHPT persistence: 8% (1/13) PHPT recurrence: 23% (3/13) Permanent hypoparathyroidism: 46% (6/13) Laryngeal nerve palsy: 0% |
[39] | Underwent PTx: 100% N1 vs. N2: Mean (95% CI) age at PTx: 40.9 (33.7–48.0) vs. 36.4 (29.3–43.4), p = 0.348 Low-moderate risk pathogenic variants N1: 43 y Moderate-high risk pathogenic variants Mean (95% CI): N1: 49 y N2: 48.5 (4.0–93.0) y p = 0.980 High-risk pathogenic variants Mean (95% CI): N1: 39.1 (31.7–46.7) y N2: 34.7 (27.2–42.3) y p = 0.370 | NA | NA |
[40] | Median (IQR) age at PTx according to pathogenic variant p.Cys634Arg/Gly/Phe/Ser/Trp/Tyr, insHisGluLeuCys (High risk): 37 (25–46) y p.Cys609/611/618/620/630Arg/Gly/Phe/Ser/Thy (Moderate-high risk): 48.5 (35.3–62.5) y p.Glu768Asp, p.Leu790Phe, p.Val804Leu, p.Val804Met, p.Ser891.Ala (Low risk): 43 y p = 0.270 Age at PTx: from 43.5 (38.5–54.5) to 16.5 y in high-risk pathogenic variants | NA | NA |
[42] | Underwent PTx: 100% (4/4) | ||
[44] | Younger age at PTx in N2 vs. N1, Plog-rank = 0.018 | NA | NA |
[46] | Underwent PTx: 85.7% (6/7) | Selective resection: 66.7% (4/6) Multi-glandular resection: 33.3% (2/6) | NA |
[47] | Underwent PTx: 100% (10/10) | NA | NA |
[48] | Age at PTx, median (IQR) = 39 (26–46) Age at PTx, median (IQR) 1922–1950 vs. 1951–1960 vs. 1961–1970 vs. 1971–1980 vs. 1981–1990 vs. 1991–2000 vs. 2001–2010: 46 (39.5–55) vs. 42 (31–45.5) vs. 31 (23–36) vs. 26 (26–26) vs. 12 (12–12) y, p = 0.008 | NA | PHPT persistence: 16.7% (1/6) Permanent hypoparathyroidism: 33.3% (2/6) Transient hypoparathyroidism: 33.3% (2/6) Permanent unilateral vocal cord palsy: 16.7% (1/6) |
Reference | Pathology Findings * |
---|---|
[36] | Uni-glandular disease: 87.5% (7/8) Multi-glandular disease: 12.5% (1/8) |
[37] | Uni-glandular disease: 75% (3/5) Multi-glandular disease: 25% (1/5) Size, median (IQR): 0.7 (0.55–0.9) cm Mass, median (IQR): 118 (56.3–302) mg |
[38] | Uni-glandular disease: 50% (6/13) Multi-glandular disease: 42% (6/13) |
[39] | N1 vs. N2: Primary tumor: mean (95% CI) diameter: 37.2 (29.8–44.7) vs. 40.7 (33.9–47.5) mm, p = 0.505 |
[42] | Uni-glandular disease: 50% (2/4) Multi-glandular disease: 50% (2/4) |
[46] | Uni-glandular disease: 33.3% (2/6) Multi-glandular disease: 50% (3/6) No parathyroid tissue: 16.7% (1/6) |
[47] | Uni-glandular disease: 70% (7/10) Multi-glandular disease: 30% (3/10) |
Reference | Main Findings * |
---|---|
[35] | Prevalence of MTC, according to pathogenic variant: p.Met918Thr: 100% (2/2) p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 88.9% (224/27) p.Gly533Cys: 50% (1/2) p.Cys611Phe/Gly/Ser/Tyr/Trp: 52% (13/25) p.Cys618Phe/Arg/Ser/Tyr: 90% (9/10) p.Cys620Phe/Arg/Ser/Tyr: 87.5% (7/8) p.Cys630Arg/Tyr: 100% (1/1) p.Glu768Asp: 80% (4/5) p.Leu790Phe: 77.8% (7/9) p.Val804Met/Leu: 51.8% (29/56) p.Ser891Arg: 92.3% (12/13) Median (min, max) age at MTC diagnosis, according to pathogenic variant: p.Met918Thr: 15.5 (8, 23) y p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 24.5 (4, 72) y p.Gly533Cys: 29 y p.Cys611Phe/Gly/Ser/Tyr/Trp: 50.5 (34, 79) y p.Cys618Phe/Arg/Ser/Tyr: 38 (27, 59) y p.Cys620Phe/Arg/Ser/Tyr: 36 (21, 55) y p.Cys630Arg/Tyr: 58 y p.Glu768Asp: 48 (39, 68) y p.Leu790Phe: 55 (10, 81) y p.Val804Met/Leu: 56 (16, 77) y p.Ser891Arg: 50 (15, 75) y |
[38] | Thyroidectomy in 100% of N1 (16/16): MTC 69% (11/16) + C-cell hyperplasia 31% (5/16) MTC diagnosis: before PHPT 45% (5/11) + synchronous with PHPT: 55% (6/11) |
[39] | N1 vs. N2: MTC prevalence: 97.4% vs. 57.0%, p < 0.001 Age at thyroidectomy: mean (95% CI): 45.4 (42.8–47.9) vs. 30.5 (28.1–32.8) y, p < 0.001 Largest primary tumor: mean (95% CI): 19.5 (16.8–22.1) vs. 7.9 (6.6–9.1) mm, p < 0.001 Carriers with node-positive MTC: 71.5% vs. 29.5%, p < 0.001 Carriers with biochemical cure: 34.1% vs. 74.8%, p < 0.001 |
[40] | High risk vs. moderate-high vs. low-moderate: MTC prevalence: 75% vs. 65.2% vs. 63.2%, p = 0.016 Age at thyroidectomy: median (IQR): 17 (6–31) vs. 29 (9–42) vs. 39 (23–56), p < 0.001 |
[41] | p.Cys618Arg vs. p.Cys634Arg/Thr/Tyr: Tumor size: mean ± SD: 8.9 ± 6.7 vs. 18.5 ± 11.1 mm, p = 0.004 Preoperative calcitonin level, proportion of upper limit: 84.5 ± 201.9 vs. 333.9 ± 314.5, p = 0.030 |
[43] | N1 vs. N2: Age at thyroidectomy: median (IQR): 8 (4–23) vs. 12 (6–25) y, p = 0.145 MTC prevalence: 68% vs. 70%, p = 0.869 Node metastases: 19% vs. 45%, p = 0.006 |
[44] | N1 vs. N2: MTC prevalence: 59% vs. 56%, p = 0.609 Age at thyroidectomy: median (IQR): 19 (6–33) vs. 17 (6.5–32) y, p = 0.705 Node metastases: 29% vs. 43%, p = 0.029 |
[46] | N1 vs. N2 vs. N4 vs. N5: Age at MTC diagnosis: mean ± SD: 30.15 ± 15.3 vs. 40.09 ± 14.78 vs. 35.3 ± 11.9 vs. 28.3 ± 19.8 N1 vs. N2: p < 0.05 N1 vs. N5: p < 0.05 Size of thyroid nodule: mean ± SD: 2.44 ± 1.35 vs. 3.14 ± 1.43 vs. 2.96 ± 1.38 vs. 2.9 ± 0.85 N1 vs. N5: p < 0.05 N2 vs. N5: p < 0.05 N4 vs. N5: p < 0.05 Cured after surgery: 46% vs. 37% vs. 35% vs. 91%; N1 vs. N5: p < 0.05; N2 vs. N5: p < 0.05; N4 vs. N5: p < 0.05 |
[47] | MTC in 100% (10/10) |
[48] | MTC: 76.5% (163/213) C-cell hyperplasia: 21.6% (46/213) Age at thyroidectomy: median (IQR): 17 (6031.5) y Largest tumor diameter: median (IQR): 6 (3–18) mm Node metastases: median (IQR): 0 (0–3) |
Reference | Main Findings * |
---|---|
[35] | Prevalence of PC, according to pathogenic variant: p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 55.6% (15/27) p.Met918Thr: 50% (1/2) p.Cys611Phe/Gly/Arg/Ser/Tyr: 28% (7/25) p.Cys618Phe/Arg/Ser/Tyr: 20% (2/10) p.Cys620Phe/Arg/Ser/Tyr: 25% (2/8) p.Leu790Phe: 11.1% (1/9) p.Ser891Arg: 7.7% (1/13) Median (min, max) age at AD, according to pathogenic variant: p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 29 (18, 72) y p.Met918Thr: 31 y p.Cys611Phe/Gly/Arg/Ser/Tyr: 55 (29, 86) y p.Cys618Phe/Arg/Ser/Tyr: 47.5 (37, 58) y p.Cys620Phe/Arg/Ser/Tyr: 43 (32, 54) y p.Leu790Phe: 62 y p.Ser891Arg: 75 y |
[38] | PC prevalence in N1: 56% (9/16): synchronous: 56% (5/9) + before PHPT: 22% (2/9) + after PHPT: 22% (2/9) |
[39] | N1 vs. N2: PC prevalence: 30.1% vs. 13.2%, p < 0.001 Age at AD: mean (95% CI) = 37.5 (34.1–41.0) vs. 40.7 (33.9–47.5) y, p = 0.431 |
[40] | High risk vs. moderate-high vs. low-moderate: PC prevalence: 32.1% vs. 16.4% vs. 3%, p < 0.001 Age at AD: median (IQR): 34 (26–42) vs. 40 (32–48) vs. 32.5 (28.5–46), p = 0.118 Contralateral PC: 19.4% vs. 4.8% vs. 1.5%, p < 0.001 |
[41] | N1 vs. N2: PC was found in 6.5% vs. 53.3%, p = 0.001 |
[43] | N1 vs. N2: PC prevalence: 19% vs. 33%, p = 0.051 Bilateral PC: 10% vs. 24%, p = 0.021 |
[44] | N1 vs. N2: PC prevalence: 13% vs. 19%, p = 0.094 Bilateral PC: 5% vs. 12%, p = 0.005 First PC inheritance from father: HR (95% CI) = 1.8 (1.1–3.0) p = 0.020 |
[45] | Prevalence of PC by pathogenic variant: p.Cys618Phe/Arg/Ser: 4.5% (1/22) p.Cys634Phe/Gly/Arg/Ser/Trp/Tyr: 70.6% (12/17) p.Leu790Phe: 0% p.Val804Met: 0% p.Ser891Ala: 0% p.Met918Thr: 0% |
[46] | N3: Prevalence PC of 48.64% (18/37) |
[47] | Prevalence of PC: 70% (7/10) Bilateral PC: 42.85% (3/7) + Unilateral PC: 57.15% (4/7) |
[48] | PC in first adrenal gland: Carriers with PC: 31.0% (66/213) → Age at AD: median (IQR): 34 (26–42) y PC in second adrenal gland: 18.8% (40/213) → Age at AD: median (IQR): 35 (29–41.8) y |
First Author Publication Year Reference Number | Studied Population | RET Pathogenic Variant | Clinical Picture and Family Medical History | Treatment and Outcome |
---|---|---|---|---|
La Greca 2024 [136] | Female, 40 y | p.K666N | PHPT Pheochromocytoma—right adrenal mass of 4.5 cm × 4.2 cm Plasma metanephrines = 1957 pg/mL (normal: <57) Plasma normetanephrines = 1329 pg/mL (normal: <148) MTC Calcitonin = 12.3–30.7 mg/dL (normal: 0–5.1) No family history Pathogenic variant identified in sister, daughter, and brother | Adrenalectomy Total thyroidectomy and selective PTx |
Jones 2024 [137] | Female, 26 y | NA (unspecified RET pathogenic variant) | Asymptomatic PHPT—adenoma and ectopic (mediastinal) parathyroid gland Multifocal MTC Bilateral pheochromocytoma No family history | PTx and total thyroidectomy, followed by bilateral adrenalectomy and thoracoscopic parathyroidectomy and thymectomy → postoperative hypoparathyroidism |
Kim 2022 [138] | Female, 64 y | p.T244I (unknown significance) | Right hip pain at onset History of PHPT—uni-glandular disease Pancreatic retroperitoneal paraganglioma of 11 cm No family history | PTx |
Brown 2020 [139] | female, 28 y | Cys630Tyr and p.Ala176Leufs*10 (loss of function MEN1 pathogenic variant) | Screening Low bone mass for age PHPT MTC Family history: PHPT: sister MTC: paternal great aunt Zollinger–Ellison syndrome: sister, father, paternal uncle Thymus carcinoid: father | Total PTx with left forearm re-implantation → postoperative hypoparathyroidism Total thyroidectomy with regional lymph node dissection Partial thymectomy |
Giani 2020 [140] | Female, 7 y | p. Asp631_Leu633delinsGlu, de novo | Marfanoid habitus Bilateral mucosal neuromas of the mouth History of plexiform neurofibroma and ganglioneuromatosis PHPT MTC No family history | Total thyroidectomy Bilateral neck exploration for PHPT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.-M.; Nistor, C.; Florescu, A.-F.; Carsote, M. An Analysis of Primary Hyperparathyroidism in Individuals Diagnosed with Multiple Endocrine Neoplasia Type 2. Diseases 2025, 13, 98. https://doi.org/10.3390/diseases13040098
Gheorghe A-M, Nistor C, Florescu A-F, Carsote M. An Analysis of Primary Hyperparathyroidism in Individuals Diagnosed with Multiple Endocrine Neoplasia Type 2. Diseases. 2025; 13(4):98. https://doi.org/10.3390/diseases13040098
Chicago/Turabian StyleGheorghe, Ana-Maria, Claudiu Nistor, Alexandru-Florin Florescu, and Mara Carsote. 2025. "An Analysis of Primary Hyperparathyroidism in Individuals Diagnosed with Multiple Endocrine Neoplasia Type 2" Diseases 13, no. 4: 98. https://doi.org/10.3390/diseases13040098
APA StyleGheorghe, A.-M., Nistor, C., Florescu, A.-F., & Carsote, M. (2025). An Analysis of Primary Hyperparathyroidism in Individuals Diagnosed with Multiple Endocrine Neoplasia Type 2. Diseases, 13(4), 98. https://doi.org/10.3390/diseases13040098