Evolving Role of Coronary Computed Tomography Angiography (CCTA) in Quantifying Atherosclerotic Coronary Artery Disease: A Narrative Review
Abstract
1. Introduction
2. The Four Stages of Atherosclerotic Coronary Artery Disease (ACAD)
3. Utility and Necessity of CCTA in Cardiovascular Care
4. Sensitivity, Specificity, and Predictive Value
5. The Use of CCTA to Reduce Antithrombotic Therapy Burden
6. Risk Factors and Protective Factors Influencing Atherosclerotic Plaque
7. Morphology and Characteristics of Plaque
8. Cohort Studies on Progression of Atherosclerotic CAD
9. Selection of Patients for CCTA and No Indications
10. Artificial Intelligence
11. Discussion
12. Early Diagnosis of ACAD
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razavi, A.C.; Bazzano, L.A.; He, J.; Krousel-Wood, M.; Chen, J.; Fernandez, C.; Whelton, S.P.; Kelly, T.N. Early Contributors to Healthy Arterial Aging Versus Premature Atherosclerosis in Young Adults: The Bogalusa Heart Study. J. Am. Heart Assoc. 2021, 10, e020774. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interactive Atlas of Heart Disease and Stroke. Available online: https://www.cdc.gov/heart-disease/data-research/facts-stats/index.html (accessed on 29 April 2025).
- Min, J.K.; Chang, H.-J.; Andreini, D.; Pontone, G.; Guglielmo, M.; Bax, J.J.; Knaapen, P.; Raman, S.V.; Chazal, R.A.; Freeman, A.M.; et al. Coronary CTA plaque volume severity stages according to invasive coronary angiography and FFR. J. Cardiovasc. Comput. Tomogr. 2022, 16, 415–422. [Google Scholar] [CrossRef]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024, 32, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.; Wasfy, J.H.; Kapil, V.; Ziaeian, B.; A Parsonage, W.; Sriswasdi, S.; A Chico, T.J.; Capodanno, D.; Colleran, R.; Sutton, N.R.; et al. The Lancet Commission on rethinking coronary artery disease: Moving from ischaemia to atheroma. Lancet 2025, 405, 1264–1312. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekhar, Y.; Mensah, G.; Narula, J. From coronary artery disease to atherosclerotic coronary artery disease: What is in a name? Lancet 2025, 405, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Rethinking coronary artery disease: A call to action. Lancet 2025, 405, 1203. [Google Scholar] [CrossRef]
- Carter, T.; Schoenaker, D.; Adams, J.; Steel, A. Paternal preconception modifiable risk factors for adverse pregnancy and offspring outcomes: A review of contemporary evidence from observational studies. BMC Public Health 2023, 23, 509. [Google Scholar] [CrossRef]
- Caut, C.; Schoenaker, D.; McIntyre, E.; Vilcins, D.; Gavine, A.; Steel, A. Relationships between women’s and men’s modifiable preconception risks and health behaviors and maternal and offspring health outcomes: An umbrella review. Semin. Reprod. Med. 2022, 40, 170–183. [Google Scholar] [CrossRef]
- Castiello, D.S.; Buongiorno, F.; Manzi, L.; Narciso, V.; Forzano, I.; Florimonte, D.; Sperandeo, L.; Canonico, M.E.; Avvedimento, M.; Paolillo, R.; et al. Procedural and Antithrombotic Therapy Optimization in Patients with Atrial Fibrillation Undergoing Percutaneous Coronary Intervention: A Narrative Review. J. Cardiovasc. Dev. Dis. 2025, 12, 142. [Google Scholar] [CrossRef]
- Singh, R.B.; Fedacko, J.; Smail, M.; Elkilany, G.; Singhal, S.; Mahajan, S. Is Vulnerable Atherosclerotic Plaque the Target for Prevention of Cardiovascular Events and Deaths? World Heart J. 2024, 16, 1–6. [Google Scholar]
- Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediat. Inflamm. 2020, 2020, 3872367. [Google Scholar] [CrossRef]
- Pahwa, R.; Jialal, I. Atherosclerosis; Stat Pearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507799/ (accessed on 10 September 2025).
- Tawakol, A.; Ishai, A.; Takx, A.P.R.; Figueroa, A.L.; Ali, A.; Kaiser, Y.; Truong, A.Q.; Solomon, C.J.; Calcagno, C.; Mani, V.; et al. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study. Lancet 2017, 389, 834–845. [Google Scholar] [CrossRef]
- Min, J.K. New Staging System for Coronary Artery Disease. 2022. Available online: https://cleerlyhealth.com/blog/new-staging-system-for-coronary-artery-disease (accessed on 1 May 2025).
- Lima, M.R.; Lopes, P.M.; Ferreira, A.M. Use of coronary artery calcium score and coronary CT angiography to guide cardiovascular prevention and treatment. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241249650. [Google Scholar] [CrossRef]
- Freeman, A.M.; Raman, S.V.; Aggarwal, M.; Maron, D.J.; Bhatt, D.L.; Parwani, P.; Osborne, J.; Earls, J.P.; Min, J.K.; Bax, J.J.; et al. Integrating Coronary Atherosclerosis Burden and Progression with Coronary Artery Disease Risk Factors to Guide Therapeutic Decision Making. Am. J. Med. 2023, 136, 260–269.e7. [Google Scholar] [CrossRef]
- Shami, A.; Sun, J.; Gialeli, C.; Markstad, H.; Edsfeldt, A.; Aurumskjöld, M.-L.; Gonçalves, I. Atherosclerotic plaque features relevant to rupture-risk detected by clinical photon-counting CT ex vivo: A proof-of-concept study. Eur. Radiol. Exp. 2024, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Fink, N.; Emrich, T.; Schoepf, U.J.; Zsarnoczay, E.; O’dOherty, J.; Halfmann, M.C.; Griffith, J.P.; Pinos, D.; Suranyi, P.; Baruah, D.; et al. Improved Detection of Small and Low-Density Plaques in Virtual Noncontrast Imaging-based Calcium Scoring at Photon-Counting Detector CT. Radiol. Cardiothorac. Imaging 2024, 6, e230328. [Google Scholar] [CrossRef] [PubMed]
- Aksu, F.; Ahmed, S. Gensini Score’s Severity and Its Relationship with Risk Factors for Coronary Artery Disease Among Patients Who Underwent Angiography in Somalia’s Largest PCI Centre. Int. J. Gen. Med. 2024, 17, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Abusheikha, A.J.; Johnson, C.S.C.; Snyder-Mackler, N.; Zimmerman, K.D.; Negrey, J.D.; Chiou, K.L.; Frye, B.M.; Howard, T.D.; Shively, C.A.; Register, T.C. Differential effects of Mediterranean vs. Western diets on coronary atherosclerosis and peripheral artery transcriptomics. Front. Nutr. 2025, 12, 1564741. [Google Scholar] [CrossRef]
- Levine, G.N.; Lange, R.A.; Bairey-Merz, C.N.; Davidson, R.J.; Jamerson, K.; Mehta, P.K.; Michos, E.D.; Norris, K.; Ray, I.B.; Saban, K.L.; et al. Meditation and Cardiovascular Risk Reduction: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2017, 6, e002218. [Google Scholar] [CrossRef]
- Soubry, A.; Murphy, S.K.; Wang, F.; Huang, Z.; Vidal, A.C.; Fuemmeler, B.F.; Kurtzberg, J.; Murtha, A.; Jirtle, R.L.; Schildkraut, J.M.; et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int. J. Obes. 2015, 39, 650–657. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef]
- Akhatova, A.; Jones, C.; Coward, K.; Yeste, M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin. Epigenet. 2025, 17, 7. [Google Scholar] [CrossRef]
- Ong, H.T.; Chen, J. Mental stress, atheroma, myocardial ischaemia and injury: The link is inflammation. Gen. Psychiatr. 2023, 36, e101282. [Google Scholar] [CrossRef]
- Kadoya, M.; Koyama, H. Sleep, Autonomic Nervous Function and Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 794. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.W. Pathophysiologic Mechanisms of Tobacco Smoke Producing Atherosclerosis. Curr. Cardiol. Rev. 2022, 18, e110422203389. [Google Scholar] [CrossRef] [PubMed]
- Kiechl, S.; Willeit, J.; Rungger, G.; Egger, G.; Oberhollenzer, F.; Bonora, E. Alcohol consumption and atherosclerosis: What is the relation? Prospective results from the Bruneck Study. Stroke 1998, 29, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, N.; Suzuki, Y.; Kuromatsu, I.; Komiya, H.; Kuzuya, M. Sedentary behavior is associated with arteriosclerosis in frail older adults. Nagoya J. Med. Sci. 2022, 84, 91–100. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment. Front. Cardiovasc. Med. 2022, 9, 959285. [Google Scholar] [CrossRef]
- Ye, J.; Li, L.; Wang, M.; Ma, Q.; Tian, Y.; Zhang, Q.; Liu, J.; Li, B.; Zhang, B.; Liu, H.; et al. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front. Immunol. 2022, 13, 900254. [Google Scholar] [CrossRef]
- Achim, A.; Péter, O.Á.; Cocoi, M.; Serban, A.; Mot, S.; Dadarlat-Pop, A.; Nemes, A.; Ruzsa, Z. Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms. J. Cardiovasc. Dev. Dis. 2023, 10, 210. [Google Scholar] [CrossRef]
- Cesena, F.Y. Metabolic syndrome and premature atherosclerotic cardiovascular disease: Insights for the individual and the population. Eur. J. Prev. Cardiol. 2024, 31, 1301–1302. [Google Scholar] [CrossRef]
- Osawa, Y.; Arai, Y. Preventive Effects of Physical Activity on the Development of Atherosclerosis: A Narrative Review. J. Atheroscler. Thromb. 2025, 32, 11–19. [Google Scholar] [CrossRef]
- Wong, J.J.; Hong, R.; Teo, L.L.Y.; Tan, R.-S.; Koh, A.S. Atherosclerotic cardiovascular disease in aging and the role of advanced cardiovascular imaging. NPJ Cardiovasc. Health 2024, 1, 11. [Google Scholar] [CrossRef]
- Feinstein, M.; Liu, K.; Ning, H.; Fitchett, G.; Lloyd-Jones, D.M. Burden of cardiovascular risk factors, subclinical atherosclerosis, and incident cardiovascular events across dimensions of religiosity: The multi-ethnic study of atherosclerosis. Circulation 2010, 121, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Cohen, B.E.; Commodore-Mensah, Y.; Fleury, J.; Huffman, J.C.; Khalid, U.; Labarthe, D.R.; Lavretsky, H.; Michos, E.D.; Spatz, E.S.; et al. Psychological Health, Well-Being, and the Mind-Heart-Body Connection: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e763–e783. [Google Scholar] [CrossRef]
- Nerlekar, N.; Vasanthakumar, S.A.; Whitmore, K.; Soh, C.H.; Chan, J.; Goel, V.; Ryan, J.; Jones, C.; Stanton, T.; Mitchell, G.; et al. Effects of combining coronary calcium score with treatment on plaque progression in familial coronary artery disease: A randomized clinical trial. JAMA 2025, 333, 1403–1412. [Google Scholar] [CrossRef]
- Narula, J.; Stuckey, T.D.; Nakazawa, G.; Ahmadi, A.; Matsumura, M.; Petersen, K.; Mirza, S.; Ng, N.; Mullen, S.; Schaap, M.; et al. Prospective deep learning-based quantitative assessment of coronary plaque by computed tomography angiography compared with intravascular ultrasound: The REVEALPLAQUE study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1287–1295. [Google Scholar] [CrossRef]
- Koo, B.K.; Yang, S.; Jung, J.W.; Zhang, J.; Lee, K.; Hwang, D.; Lee, K.S.; Doh, J.H.; Nam, C.W.; Kim, T.H.; et al. Artificial intelligence-enabled quantitative coronary plaque and hemodynamic analysis for predicting acute coronary syndrome. Cardiovasc. Imaging 2024, 17, 1062–1076. [Google Scholar]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/ SCMR guideline for the evaluation and diagnosis of chest pain: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Cardiovasc. Comput. Tomogr. 2021, 16, 51–122. [Google Scholar]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- SCOT-HEART Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): An open-label, parallel-group, multicentre trial. Lancet 2015, 385, 2383–2391. [Google Scholar] [CrossRef]
- Newby, D.E.; Adamson, P.D.; Berry, C.; Boon, N.A.; Dweck, M.R.; Flather, M.; Forbes, J.; Hunter, A.; Lewis, S.; MacLean, S.; et al. Coronary CT angiography and 5-year risk of myocardial infarction. N. Engl. J. Med. 2018, 379, 924–933. [Google Scholar]
- Williams, M.C.; Wereski, R.; Tuck, C.; Adamson, P.D.; Shah, A.S.V.; van Beek, E.J.R.; Roditi, G.; Berry, C.; Boon, N.; Flather, M.; et al. Coronary CT angiography-guided management of patients with stable chest pain: 10-year outcomes from the SCOT-HEART randomised controlled trial in Scotland. Lancet 2025, 405, 329–337. [Google Scholar] [CrossRef]
- Gupta, A.; Mackay, J.; Whitehouse, A.; Godec, T.; Collier, T.; Pocock, S.; Poulter, N.; Sever, P. Long-term mortality after blood pressure-lowering and lipid-lowering treatment in patients with hypertension in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Legacy study: 16-year follow-up results of a randomised factorial trial. Lancet 2018, 392, 1127–1137. [Google Scholar] [CrossRef]
- Ford, I.; Murray, H.; McCowan, C.; Packard, C.J. Long-term safety and efficacy of lowering low-density lipoprotein cholesterol with statin therapy: 20-year follow-up of West of Scotland Coronary Prevention Study. Circulation 2016, 133, 1073–1080. [Google Scholar] [CrossRef]
- Kwan, A.C.; Gransar, H.; Tzolos, E.; Chen, B.; Otaki, Y.; Klein, E.; Pope, A.J.; Han, D.; Howarth, A.; Jain, N.; et al. The accuracy of coronary CT angiography in patients with coronary calcium score above 1000 Agatston Units: Comparison with quantitative coronary angiography. J. Cardiovasc. Comput. Tomogr. 2021, 15, 412–418. [Google Scholar] [CrossRef]
- Boden, W.E.; O’Rourke, R.A.; Teo, K.K.; Hartigan, P.M.; Maron, D.J.; Kostuk, W.J.; Knudtson, M.; Dada, M.; Casperson, P.; Harris, C.L.; et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 2007, 356, 1503–1516. [Google Scholar] [CrossRef]
- Maron, D.J.; Hochman, J.S.; Reynolds, H.R.; Bangalore, S.; O’Brien, S.M.; Boden, W.E.; Chaitman, B.R.; Senior, R.; López-Sendón, J.; Alexander, K.P.; et al. Initial invasive or conservative strategy for stable coronary disease. N. Engl. J. Med. 2020, 382, 1395–1407. [Google Scholar] [CrossRef]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; De Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef]
- Motoyama, S.; Sarai, M.; Harigaya, H.; Anno, H.; Inoue, K.; Hara, T.; Naruse, H.; Ishii, J.; Hishida, H.; Wong, N.D.; et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol. 2009, 54, 49–57. [Google Scholar] [CrossRef]
- Ahmadi, A.; Argulian, E.; Leipsic, J.; Newby, D.E.; Narula, J. From subclinical atherosclerosis to plaque progression and acute coronary events. J. Am. Coll. Cardiol. 2019, 74, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, S.; Ito, H.; Sarai, M.; Kondo, T.; Kawai, H.; Nagahara, Y.; Harigaya, H.; Kan, S.; Anno, H.; Takahashi, H.; et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 2015, 66, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Bergström, G.; Persson, M.; Adiels, M.; Björnson, E.; Bonander, C.; Ahlström, H.; Alfredsson, J.; Angerås, O.; Berglund, G.; Blomberg, A.; et al. Prevalence of subclinical coronary artery atherosclerosis in the general population. Circulation 2021, 144, 916–929. [Google Scholar] [CrossRef] [PubMed]
- Pergola, V.; Yaduvanshi, A.; Gupta, R.; Tselo, N.; Manal Smail, M.A. The Value of Coronary CT Angiography in Patients with Stable Chest Pain. World Heart J. 2025, 17. in press. [Google Scholar]
- Jankajova, M.; Singh, R.B.; Hristova, K.; Elkilany, G.; Fatima, G.; Singh, J.; Fedacko, J. Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure. Diagnostics 2024, 14, 2618. [Google Scholar] [CrossRef]
- Kay, F.U.; Canan, A.; Kukkar, V.; Hulsey, K.; Scanio, A.; Fan, C.; Hallam, K.A.; Gulsun, M.A.; Wels, M.; Schoebinger, M.; et al. Diagnostic Accuracy of On-Premise Automated Coronary CT Angiography Analysis Based on Coronary Artery Disease Reporting and Data System 2.0. Radiology 2025, 315, e242087. [Google Scholar] [CrossRef]
- Chakravorty, S.; Fedacko, J.; Singh, R.B.; Shukla, A.K.; Agarwal, A.; Juneja, L.; Jain, M.; Yaduvanshi, M.; Dhar, K.; Mahajan, S.; et al. Noida Declaration for Prevention of Cardiovascular Diseases and Type 2 Diabetes Mellitus: A Scientific Statement of the International College of Cardiology and International College of Nutrition; ICC-ICN Expert Group. World Heart J. 2024, 16. in press. [Google Scholar]
- Singh, R.B.; Cornelissen, G.; Chibisov, S.; Fedacko, J. Atherosclerosis? A disease of the brain. World Heart J. 2017, 9, 99–106. [Google Scholar]
- Puddu, P.E.; Menotti, A. Wine intake and 45-year mortality in middle-aged men with high alcohol consumption: The Italian rural areas of the Seven Countries Study. Brain Heart 2024, 2, 3016. [Google Scholar] [CrossRef]
Stages of Plaque | Total Plaque Volume (mm3) | Percent Atheroma Volume (%) | Medical Therapy |
---|---|---|---|
Stage 0: absence of plaque | 0, normal | 0, normal | Lifestyle modification |
Stage 1: mild plaque | >0–250 mm3 | >0–5% | Guideline-directed; statins |
Stage 2: moderate plaque | >250–750 mm3 | >5–15% | Moderately intensive; high-intensity statins and other agents + bempedoic acid |
Stage 3: severe plaque | >750 mm3 | >15% | Most intensive, high-intensity statins + ezetimibe + PCSK-9i, inclisiran, etc. + bempedoic acid, etc. |
Behavioral Risk Factors | Biological Risk Factors | Protective Factors |
---|---|---|
Western diet [21] | Hypertension [31] | Mediterranean-style diet [21] |
Mental disorders [26] | Diabetes mellitus [32] | Meditation, yoga, and prayer [22] |
Sleep disorders [27] | Coronary artery disease [33] | Optimal sleep [27] |
Tobacco use [28] | Metabolic syndrome [34] | Moderate physical activity [35] |
Alcoholism [29] | Aging [36] | Religious service attendance [37] |
Sedentary behavior [30] | Inflammation [38] | Well-being [39] |
Coronary Artery Disease | Atherosclerotic Coronary Artery Disease | ||
---|---|---|---|
Detection of obstruction | Find coronary stenosis; causes ischemia | Detection of plaque | Characterize coronary plaque, as it is central disease marker |
Test for ischemia | Find ischemia; causes events | Stabilize disease | Treat plaque, stop progression, reverse disease; high risk—more adverse events |
PCI/CABG | Treat stenosis; reduce ischemia | Revascularize | Revascularize severe stenosis, significant ischemia, symptoms despite OMT-symptom relief |
Change, customize | Improvement in symptoms; less consistent benefit in hard endpoints | Change, customize | Finding and modifying plaque, likely to reduce deaths and MI, reduction in need for future revascularization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smail, M.A.M.; Singh, R.B.; Fedacko, J.; Elkilany, G.; Hristova, K.; Sharma, S.; Bathallah, A.; Baathallah, S.A.; Jankajova, M.; Sozzi, F. Evolving Role of Coronary Computed Tomography Angiography (CCTA) in Quantifying Atherosclerotic Coronary Artery Disease: A Narrative Review. Diseases 2025, 13, 343. https://doi.org/10.3390/diseases13100343
Smail MAM, Singh RB, Fedacko J, Elkilany G, Hristova K, Sharma S, Bathallah A, Baathallah SA, Jankajova M, Sozzi F. Evolving Role of Coronary Computed Tomography Angiography (CCTA) in Quantifying Atherosclerotic Coronary Artery Disease: A Narrative Review. Diseases. 2025; 13(10):343. https://doi.org/10.3390/diseases13100343
Chicago/Turabian StyleSmail, M. A. Manal, Ram B. Singh, Jan Fedacko, Galal Elkilany, Krasimira Hristova, Sarthak Sharma, Ahmed Bathallah, Sherif A. Baathallah, Monika Jankajova, and Fabiola Sozzi. 2025. "Evolving Role of Coronary Computed Tomography Angiography (CCTA) in Quantifying Atherosclerotic Coronary Artery Disease: A Narrative Review" Diseases 13, no. 10: 343. https://doi.org/10.3390/diseases13100343
APA StyleSmail, M. A. M., Singh, R. B., Fedacko, J., Elkilany, G., Hristova, K., Sharma, S., Bathallah, A., Baathallah, S. A., Jankajova, M., & Sozzi, F. (2025). Evolving Role of Coronary Computed Tomography Angiography (CCTA) in Quantifying Atherosclerotic Coronary Artery Disease: A Narrative Review. Diseases, 13(10), 343. https://doi.org/10.3390/diseases13100343