Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patient and Volunteer Cohorts
2.2. Blood Collection
2.3. Exhaled Breath Condensate (EBC) Collection
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. RT-qPCR
2.6. Immunohistochemistry
2.7. Statistics
3. Results
3.1. Biomarker Assessments in NSCLC Patients
3.2. EBC Biomarker Assessments in Normal Individuals
3.3. High-Sensitivity IL-11 Assay in NSCLC Patients
3.4. IL-11 Expression in NSCLC Lung Tumor Biopsies
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.J.; Kapiris, M.; Podvez Nevajda, A.; McGrath, H.; Stavraka, C.; Ahmad, S.; Taylor, B.; Cook, G.J.R.; Ghosh, S.; Josephs, D.; et al. Non-Small Cell Lung Cancer (NSCLC) in Young Adults, Age < 50, Is Associated with Late Stage at Presentation and a Very Poor Prognosis in Patients That Do Not Have a Targeted Therapy Option: A Real-World Study. Cancers 2022, 14, 6056. [Google Scholar] [CrossRef] [PubMed]
- Dalwadi, S.M.; Zhang, J.; Bernicker, E.H.; Butler, E.B.; Teh, B.S.; Farach, A.M. Socioeconomic Factors Associated with Lack of Treatment in Early Stage Non-Small Cell Lung Cancer. Cancer Investig. 2019, 37, 506–511. [Google Scholar] [CrossRef]
- Torres-Martínez, S.; Calabuig-Fariñas, S.; Gallach, S.; Mosqueda, M.; Munera-Maravilla, E.; Sirera, R.; Navarro, L.; Blasco, A.; Camps, C.; Jantus-Lewintre, E. Circulating Immune Proteins: Improving the Diagnosis and Clinical Outcome in Advanced Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2023, 24, 17587. [Google Scholar] [CrossRef]
- Baratella, E.; Cernic, S.; Minelli, P.; Furlan, G.; Crimì, F.; Rocco, S.; Ruaro, B.; Cova, M.A. Accuracy of CT-Guided Core-Needle Biopsy in Diagnosis of Thoracic Lesions Suspicious for Primitive Malignancy of the Lung: A Five-Year Retrospective Analysis. Tomography 2022, 8, 2828–2838. [Google Scholar] [CrossRef]
- Zheng, Y.; Feng, B.; Chen, J.; You, L. Efficacy, safety, and survival of neoadjuvant immunochemotherapy in operable non-small cell lung cancer: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1273220. [Google Scholar] [CrossRef]
- Kumar, V.; Chaudhary, N.; Garg, M.; Floudas, C.S.; Soni, P.; Chandra, A.B. Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy. Front. Pharmacol. 2017, 8, 49. [Google Scholar] [CrossRef]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing Toxicities Associated with Immune Checkpoint Inhibitors: Consensus Recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef]
- Bodor, J.N.; Boumber, Y.; Borghaei, H. Biomarkers for Immune Checkpoint Inhibition in Non-Small Cell Lung Cancer (NSCLC). Cancer 2020, 126, 260–270. [Google Scholar] [CrossRef]
- Bocanegra, A.; Blanco, E.; Fernandez-Hinojal, G.; Arasanz, H.; Chocarro, L.; Zuazo, M.; Morente, P.; Vera, R.; Escors, D.; Kochan, G. PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. Int. J. Mol. Sci. 2020, 21, 5918. [Google Scholar] [CrossRef] [PubMed]
- Oitabén, A.; Fonseca, P.; Villanueva, M.J.; García-Benito, C.; López-López, A.; Garrido-Fernández, A.; González-Ojea, C.; Juaneda-Magdalena, L.; Lázaro, M.E.; Martínez-Fernández, M. Emerging Blood-Based Biomarkers for Predicting Immunotherapy Response in NSCLC. Cancers 2022, 14, 2626. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann-Guerrero, D.; Kahnert, K.; Kiefl, R.; Sellmer, L.; Walter, J.; Behr, J.; Tufman, A. Systemic Inflammation and pro-Inflammatory Cytokine Profile Predict Response to Checkpoint Inhibitor Treatment in NSCLC: A Prospective Study. Sci. Rep. 2021, 11, 10919. [Google Scholar] [CrossRef] [PubMed]
- Heichler, C.; Scheibe, K.; Schmied, A.; Geppert, C.I.; Schmid, B.; Wirtz, S.; Thoma, O.-M.; Kramer, V.; Waldner, M.J.; Büttner, C.; et al. STAT3 Activation through IL-6/IL-11 in Cancer-Associated Fibroblasts Promotes Colorectal Tumour Development and Correlates with Poor Prognosis. Gut 2020, 69, 1269–1282. [Google Scholar] [CrossRef]
- Nishina, T.; Deguchi, Y.; Ohshima, D.; Takeda, W.; Ohtsuka, M.; Shichino, S.; Ueha, S.; Yamazaki, S.; Kawauchi, M.; Nakamura, E.; et al. Interleukin-11-Expressing Fibroblasts Have a Unique Gene Signature Correlated with Poor Prognosis of Colorectal Cancer. Nat. Commun. 2021, 12, 2281. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, L.; Guo, Y.; Lü, J.; Li, D.; Xie, H.; Wang, Q.; Ma, W.; Liu, P.; Liu, Y.; et al. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics 2023, 13, 2337–2349. [Google Scholar] [CrossRef]
- Ren, C.; Chen, Y.; Han, C.; Fu, D.; Chen, H. Plasma Interleukin-11 (IL-11) Levels Have Diagnostic and Prognostic Roles in Patients with Pancreatic Cancer. Tumour Biol. 2014, 35, 11467–11472. [Google Scholar] [CrossRef]
- Ur Rehman, A.; Wang, Z.; Qin, Q.; Zhang, X.; Akhtar, A.; Liu, H.; Mao, B.; Khan, N.; Tang, L.; Li, X. Enhancing antitumor immunity and achieving tumor eradication with IL11RA mRNA immunotherapy. Int. Immunopharmacol. 2024, 134, 112205. [Google Scholar] [CrossRef]
- Pastor, M.D.; Nogal, A.; Molina-Pinelo, S.; Quintanal-Villalonga, Á.; Meléndez, R.; Ferrer, I.; Romero-Romero, B.; De Miguel, M.J.; López-Campos, J.L.; Corral, J.; et al. IL-11 and CCL-1: Novel Protein Diagnostic Biomarkers of Lung Adenocarcinoma in Bronchoalveolar Lavage Fluid (BALF). J. Thorac. Oncol. 2016, 11, 2183–2192. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Lv, X.; Yang, Q.; Yao, S.; Zhang, D.; Chen, J. Clinical Value of Serum and Exhaled Breath Condensate Inflammatory Factor IL-11 Levels in Non-Small Cell Lung Cancer: Clinical Value of IL-11 in Non-Small Cell Lung Cancer. Int. J. Biol. Markers 2021, 36, 64–76. [Google Scholar] [CrossRef]
- Leung, J.H.; Ng, B.; Lim, W.-W. Interleukin-11: A Potential Biomarker and Molecular Therapeutic Target in Non-Small Cell Lung Cancer. Cells 2022, 11, 2257. [Google Scholar] [CrossRef] [PubMed]
- Chomej, P.; Bauer, K.; Bitterlich, N.; Hui, D.S.; Chan, K.S.; Gosse, H.; Schauer, J.; Hoheisel, G.; Sack, U. Differential diagnosis of pleural effusions by fuzzy-logic-based analysis of cytokines. Respir. Med. 2004, 98, 308–317. [Google Scholar] [CrossRef]
- Agulló-Ortuño, M.T.; Gómez-Martín, Ó.; Ponce, S.; Iglesias, L.; Ojeda, L.; Ferrer, I.; García-Ruiz, I.; Paz-Ares, L.; Pardo-Marqués, V. Blood predictive biomarkers for patients with non–small-cell lung cancer associated with clinical response to Nivolumab. Clin. Lung Cancer 2020, 21, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Zhang, L.; Dai, Y. The Role of IL-6 in Immunotherapy of Non-Small Cell Lung Cancer (NSCLC) with Immune-Related Adverse Events (irAEs). Thorac. Cancer 2020, 11, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Sanmamed, M.F.; Perez-Gracia, J.L.; Schalper, K.A.; Fusco, J.P.; Gonzalez, A.; Rodriguez-Ruiz, M.E.; Oñate, C.; Perez, G.; Alfaro, C.; Martín-Algarra, S.; et al. Changes in Serum Interleukin-8 (IL-8) Levels Reflect and Predict Response to Anti-PD-1 Treatment in Melanoma and Non-Small-Cell Lung Cancer Patients. Ann. Oncol. 2017, 28, 1988–1995. [Google Scholar] [CrossRef]
- Wang, Y.N.; Lou, D.F.; Li, D.Y.; Jiang, W.; Dong, J.Y.; Gao, W.; Chen, H.C. Elevated Levels of IL-17A and IL-35 in Plasma and Bronchoalveolar Lavage Fluid Are Associated with Checkpoint Inhibitor Pneumonitis in Patients with Non-Small Cell Lung Cancer. Oncol. Lett. 2020, 20, 611–622. [Google Scholar] [CrossRef]
- Hu, L.-A.; Fu, Y.; Zhang, D.-N.; Zhang, J. Serum IL-33 as a Diagnostic and Prognostic Marker in Non- Small Cell Lung Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 2563–2566. [Google Scholar] [CrossRef]
- Lababede, O.; Meziane, M.A. The Eighth Edition of TNM Staging of Lung Cancer: Reference Chart and Diagrams. Oncologist 2018, 23, 844–848. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From clinical significance to quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef]
- Reitter, E.-M.; Ay, C.; Kaider, A.; Pirker, R.; Zielinski, C.; Zlabinger, G.; Pabinger, I. Interleukin Levels and Their Potential Association with Venous Thromboembolism and Survival in Cancer Patients. Clin. Exp. Immunol. 2014, 177, 253–260. [Google Scholar] [CrossRef]
- Akbay, E.A.; Koyama, S.; Liu, Y.; Dries, R.; Bufe, L.E.; Silkes, M.; Alam, M.M.; Magee, D.M.; Jones, R.; Jinushi, M.; et al. Interleukin-17A Promotes Lung Tumor Progression through Neutrophil Attraction to Tumor Sites and Mediating Resistance to PD-1 Blockade. J. Thorac. Oncol. 2017, 12, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Tian, C.; Zhang, C.; Xiang, M. The Controversial Role of IL-33 in Lung Cancer. Front. Immunol. 2022, 13, 897356. [Google Scholar] [CrossRef] [PubMed]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in Cancer: From Biology to Therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Dutkowska, A.; Szmyd, B.; Kaszkowiak, M.; Domańska-Senderowska, D.; Pastuszak-Lewandoska, D.; Brzeziańska-Lasota, E.; Kordiak, J.; Antczak, A. Expression of Inflammatory Interleukins and Selected miRNAs in Non-Small Cell Lung Cancer. Sci. Rep. 2021, 11, 5092. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, L.; Lu, J.; Ng, I.O.-L. Exosomes and Cancer—Diagnostic and Prognostic Biomarkers and Therapeutic Vehicle. Oncogenesis 2022, 11, 54. [Google Scholar] [CrossRef]
- Chen, R.; Xu, X.; Qian, Z.; Zhang, C.; Niu, Y.; Wang, Z.; Sun, J.; Zhang, X.; Yu, Y. The Biological Functions and Clinical Applications of Exosomes in Lung Cancer. Cell. Mol. Life Sci. 2019, 76, 4613–4633. [Google Scholar] [CrossRef]
- Rahimian, S.; Najafi, H.; Afzali, B.; Doroudian, M. Extracellular Vesicles and Exosomes: Novel Insights and Perspectives on Lung Cancer from Early Detection to Targeted Treatment. Biomedicines 2024, 12, 123. [Google Scholar] [CrossRef]
- Setrerrahmane, S.; Xu, H. Tumor-Related Interleukins: Old Validated Targets for New Anti-Cancer Drug Development. Mol. Cancer 2017, 16, 153. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Patsiris, S.; Exarchos, T.; Vlamos, P. Exhaled Breath Condensate (EBC): Is It a Viable Source of Biomarkers for Lung Diseases? Adv. Exp. Med. Biol. 2020, 1195, 13–18. [Google Scholar] [CrossRef]
- Kita, K.; Gawinowska, M.; Chełmińska, M.; Niedoszytko, M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int. J. Mol. Sci. 2024, 25, 7395. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-T.; Schlom, J.; Donahue, R.N. Blood-Based Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Blockade. J. Exp. Clin. Cancer Res. 2024, 43, 82. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Yu, Z.; Guo, W.; Liu, Q.; Wu, Y.; Li, Y.; Bai, L. Prognostic Value of Circulating Inflammatory Factors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cancer Biomark. 2014, 14, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Xue, L.; Tian, T.; Zhang, B.; Guo, L.; Lin, G.; Chen, Z.; Fan, K.; Gu, X. Prognostic Value of Serum IL-17 and VEGF Levels in Small Cell Lung Cancer. Int. J. Biol. Markers 2015, 30, e359–e363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, Z.Y.; Sun, B.; Wang, G.Y.; Fu, Z.; Liu, Y.M.; Kong, Q.F.; Wang, J.H.; Zhang, Y.; Xu, X.Y.; et al. Effects of IL-17A on the Occurrence of Lung Adenocarcinoma. Cancer Biol. Ther. 2011, 12, 610–616. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Fei, G.; Guo, Z.; Ren, T.; Liu, Z. IL-17 Promoted Metastasis of Non-Small-Cell Lung Cancer Cells. Immunol. Lett. 2012, 148, 144–150. [Google Scholar] [CrossRef]
- Xu, C.; Hao, K.; Yu, L.; Zhang, X. Serum Interleukin-17 as a Diagnostic and Prognostic Marker for Non-Small Cell Lung Cancer. Biomarkers 2014, 19, 287–290. [Google Scholar] [CrossRef]
- Brussino, L.; Culla, B.; Bucca, C.; Giobbe, R.; Boita, M.; Isaia, G.; Heffler, E.; Oliaro, A.; Filosso, P.; Rolla, G. Inflammatory Cytokines and VEGF Measured in Exhaled Breath Condensate Are Correlated with Tumor Mass in Non-Small Cell Lung Cancer. J. Breath. Res. 2014, 8, 027110. [Google Scholar] [CrossRef]
- Tang, M.; Xu, M.; Wang, J.; Liu, Y.; Liang, K.; Jin, Y.; Duan, W.; Xia, S.; Li, G.; Chu, H.; et al. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. Adv. Sci. 2024, 11, e2306348. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Liu, R.; Qi, J.; Hou, Y.; Chang, J.; Ren, L. Upregulation of IL-11, an IL-6 Family Cytokine, Promotes Tumor Progression and Correlates with Poor Prognosis in Non-Small Cell Lung Cancer. Cell. Physiol. Biochem. 2018, 45, 2213–2224. [Google Scholar] [CrossRef]
- Widjaja, A.A.; Chothani, S.; Viswanathan, S.; Goh, J.W.T.; Lim, W.-W.; Cook, S.A. IL11 Stimulates IL33 Expression and Proinflammatory Fibroblast Activation across Tissues. Int. J. Mol. Sci. 2022, 23, 8900. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, E.; Heo, J.-S.; Bae, D.-J.; Lee, J.-U.W.; Lee, T.-H.; Lee, H.J.; Chang, H.S.; Park, J.S.; Jang, A.S.; et al. Circulating IL-33 Level Is Associated with the Progression of Lung Cancer. Lung Cancer 2015, 90, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Parkitny, L.; McAuley, J.H.; Kelly, P.J.; Di Pietro, F.; Cameron, B.; Moseley, G.L. Multiplex Cytokine Concentration Measurement: How Much Do the Medium and Handling Matter? Mediators Inflamm. 2013, 2013, 890706. [Google Scholar] [CrossRef] [PubMed]
- Skogstrand, K. Multiplex Assays of Inflammatory Markers, a Description of Methods and Discussion of Precautions—Our Experience through the Last Ten Years. Methods 2012, 56, 204–212. [Google Scholar] [CrossRef]
- Ragni, M.V.; Jankowitz, R.C.; Chapman, H.L.; Merricks, E.P.; Kloos, M.T.; Dillow, A.M.; Nichols, T.C. A Phase II Prospective Open-Label Escalating Dose Trial of Recombinant Interleukin-11 in Mild von Willebrand Disease. Haemophilia 2008, 14, 968–977. [Google Scholar] [CrossRef]
- Ismail, M.B.; Åkefeldt, S.O.; Lourda, M.; Gavhed, D.; Gayet, R.; Aricò, M.; Henter, J.-I.; Delprat, C.; Valentin, H. Comparison of Three Different ELISAs for the Detection of Recombinant, Native and Plasma IL-17A. MethodsX 2020, 7, 100997. [Google Scholar] [CrossRef]
- Bhatwa, A.; Wang, W.; Hassan, Y.I.; Abraham, N.; Li, X.-Z.; Zhou, T. Challenges Associated with the Formation of Recombinant Protein Inclusion Bodies in and Strategies to Address Them for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 630551. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, J.; Wang, M.; Wang, Y.; Ji, Q.; Huang, Y.; Zeng, T.; Wang, Z.; Ye, D.; Jiang, H.; et al. Increased Interleukin-11 Levels in Thoracic Aorta and Plasma from Patients with Acute Thoracic Aortic Dissection. Clin. Chim. Acta 2018, 481, 193–199. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Z.; Ye, D.; Wang, Y.; Wang, M.; Ji, Q.; Huang, Y.; Liu, L.; Shi, Y.; Shi, L.; et al. Increased Interleukin-11 Levels Are Correlated with Cardiac Events in Patients with Chronic Heart Failure. Mediat. Inflamm. 2019, 2019, 1575410. [Google Scholar] [CrossRef]
- Vignoli, A.; Tenori, L.; Morsiani, C.; Turano, P.; Capri, M.; Luchinat, C. Serum or plasma (and which plasma), that is the question. J. Proteome Res. 2022, 21, 1061–1072. [Google Scholar] [CrossRef]
- Myzithras, M.; Lin, S.; Radden, L.; Hess Kenny, C.; Cai, Z.; MacDonald, A.; Binetti, R.; Marlow, M.; Fracasso, P.; Gibson, G.; et al. Development of novel ultra-sensitive IL-11 target engagement assays to support mechanistic PK/PD modeling for an anti-IL-11 antibody therapeutic. mAbs 2022, 14, 2104153. [Google Scholar] [CrossRef]
Normal Volunteers (N = 25) | NSCLC Patients (N = 21) | p-Value | |
---|---|---|---|
Characteristics | |||
Median Age (IQR) | 40 (35.5–48.5) | 65 (60–70) | 5.88 × 1011 |
Gender, Female (%) | 12 (48) | 7 (33) | 0.3769 |
Ethnicity | 0.1107 | ||
Chinese, N (%) | 24 (96) | 16 (76.19) | |
Malay, N (%) | 1 (4) | 3 (14.29) | |
Indian, N (%) | 0 (0) | 0 (0) | |
Others, N (%) | 0 (0) | 2 (9.52) | |
Smoking status | 0.0058 | ||
Non-smoker, N (%) | 25 (100) | 15 (71.43) | |
Ex-smoker, N (%) | 0 (0) | 4 (19.05) | |
Current smoker, N (%) | 0 (0) | 2 (9.52) | |
Lung cancer stage | NA | NA | |
Stage 0, N (%) | 1 (4.76) | ||
Stage IA1, N (%) | 0 (0) | ||
Stage IA2, N (%) | 6 (28.57) | ||
Stage IA3, N (%) | 6 (28.57) | ||
Stage IB, N (%) | 5 (23.81) | ||
Stage IIA, N (%) | 0 (0) | ||
Stage IIB, N (%) | 1 (4.76) | ||
Stage IIIA, N (%) | 1 (4.76) | ||
Stage IIIB, N (%) | 1 (4.76) |
Cytokine (Concentration) | Min | Median | Max | Subjects with Detectable Analytes, N (%) |
---|---|---|---|---|
IL-11 (pg/mL) | ND | ND | ND | 0 (0) |
IL-6 (pg/mL) | NA | 7.64 | NA | 1 (4.17) |
IL-8 (pg/mL) | 2.83 | 3.06 | 8.62 | 18 (75) |
IL-17A (pg/mL) | NA | 27.45 | NA | 1 (4.17) |
IL-33 (pg/mL) | ND | ND | ND | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, W.-W.; Leung, J.H.; Xie, C.; Cheng, A.W.T.; Su, L.; Lum, L.-N.; Toh, A.; Kong, S.-C.; Takano, A.M.; Hausenloy, D.J.; et al. Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals. Diseases 2024, 12, 221. https://doi.org/10.3390/diseases12090221
Lim W-W, Leung JH, Xie C, Cheng AWT, Su L, Lum L-N, Toh A, Kong S-C, Takano AM, Hausenloy DJ, et al. Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals. Diseases. 2024; 12(9):221. https://doi.org/10.3390/diseases12090221
Chicago/Turabian StyleLim, Wei-Wen, Jason H. Leung, Chen Xie, Angelina W. T. Cheng, Liping Su, Luh-Nah Lum, Aishah Toh, Siew-Ching Kong, Angela M. Takano, Derek J. Hausenloy, and et al. 2024. "Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals" Diseases 12, no. 9: 221. https://doi.org/10.3390/diseases12090221
APA StyleLim, W. -W., Leung, J. H., Xie, C., Cheng, A. W. T., Su, L., Lum, L. -N., Toh, A., Kong, S. -C., Takano, A. M., Hausenloy, D. J., & Chua, Y. C. (2024). Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals. Diseases, 12(9), 221. https://doi.org/10.3390/diseases12090221