Association between Dietary Practice and Gait Speed in Community-Dwelling Older Adults with Overweight and Obesity: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design of this Study
2.2. Body Weight and Height
- Body weight (kg) ÷ height2 (m).
2.3. Body Composition
- BF = total body fat expressed in kg;
- BF% (BF as a percentage of the total mass) = (BF ÷ body weight) × 100;
- Appendicular Lean Mass (ALM) = total lean mass in arms and legs with bone excluded, expressed in kg.
2.4. Functional Test
2.5. Dietary Practice and Dietary Adequacy (DA) Score
- -
- Number of meals:
- Score 0: one meal per day.
- Score 1: two or three meals per day.
- -
- Protein intake:
- Score 0: consumption of no more than one of the three main sources of protein, with the sources defined as follows: one serving of dairy per day; two or more servings of legumes and eggs per week; or meat, fish, or poultry every day.
- Score 1: consumption of two sources.
- Score 2: consumption of three sources.
- -
- Fruits and vegetables:
- Score 0: fewer than two servings of fruits and vegetables per day.
- Score 1: two or more servings of fruits and vegetable per day.
- -
- Fluids:
- Score 0: less than three-to-five cups per day.
- Score 1: three-to-five cups per day.
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Findings and Concordance with Previous Studies
4.2. Potential Clinical Implications
4.3. Strengths and Limitations
4.4. New Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colón-Emeric, C.S.; Whitson, H.E.; Pavon, J.; Hoenig, H. Functional decline in older adults. Am. Fam. Physician 2013, 88, 388–394. [Google Scholar]
- Freedman, V.A.; Martin, L.G.; Schoeni, R. Recent trends in disability and functioning among older adults in the United States: A systematic review. JAMA 2002, 288, 3137–3146. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.M.; Kurland, B. The burden and patterns of disability in activities of daily living among community-living older persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Mehmet, H.; Robinson, S.R.; Hong Yang, A.W. Assessment of Gait Speed in Older Adults. J. Geriatr. Phys. Ther. 2020, 43, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Wang, Y.C. Four-Meter Gait Speed: Normative Values and Reliability Determined for Adults Participating in the NIH Toolbox Study. Arch. Phys. Med. Rehabil. 2019, 100, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Stuck, A.K.; Bachmann, M.; Füllemann, P.; Josephson, K.R.; Stuck, A. Effect of testing procedures on gait speed measurement: A systematic review. PLoS ONE 2020, 15, e0234200. [Google Scholar] [CrossRef]
- Maggio, M.; Ceda, G.P.; Ticinesi, A.; De Vita, F.; Gelmini, G.; Costantino, C.; Meschi, T.; Kressig, R.W.; Cesari, M.; Fabi, M.; et al. Instrumental and non-instrumental evaluation of 4-meter walking speed in older individuals. PLoS ONE 2016, 11, e0153583. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- He, M.; Lian, T.; Guo, P.; Zhang, Y.; Huang, Y.; Qi, J.; Li, J.; Guan, H.; Luo, D.; Liu, Z.; et al. Association between nutritional status and gait performance in Alzheimer’s disease. CNS Neurosci. Ther. 2023; online ahead of print. [Google Scholar]
- Abellan van Kan, G.; Rolland, Y.; Gillette-Guyonnet, S.; Gardette, V.; Annweiler, C.; Beauchet, O.; Vellas, B. Gait speed, body composition, and dementia. The EPIDOS-Toulouse cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 425–432. [Google Scholar] [CrossRef]
- Viccaro, L.J.; Perera, S.; Studenski, S. Is timed up and go better than gait speed in predicting health, function, and falls in older adults? J. Am. Geriatr. Soc. 2011, 59, 887–892. [Google Scholar] [CrossRef]
- Atkinson, H.H.; Cesari, M.; Kritchevsky, S.B.; Penninx, B.W.; Fried, L.P.; Guralnik, J.M.; Williamson, J.D. Predictors of combined cognitive and physical decline. J. Am. Geriatr. Soc. 2005, 53, 1197–1202. [Google Scholar] [CrossRef]
- Barthuly, A.M.; Bohannon, R.W.; Gorack, W. Gait speed is a responsive measure of physical performance for patients undergoing short-term rehabilitation. Gait Posture 2012, 36, 61–64. [Google Scholar] [CrossRef]
- Blain, H.; Carriere, I.; Sourial, N.; Berard, C.; Favier, F.; Colvez, A.; Bergman, H. Balance and walking speed predict subsequent 8-year mortality independently of current and intermediate events in well-functioning women aged 75 years and older. J. Nutr. Health Aging 2010, 17, 595–600. [Google Scholar] [CrossRef]
- Khanittanuphong, P.; Tipchatyotin, S. Correlation of the gait speed with the quality of life and the quality of life classified according to speed-based community ambulation in Thai stroke survivors. NeuroRehabilitation 2017, 41, 135–141. [Google Scholar] [CrossRef]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How gait influences frailty models and health-related outcomes in clinical-based and population-based studies: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef]
- Knapstad, M.K.; Naterstad, I.; Bogen, B.T. he association between cognitive impairment, gait speed, and Walk ratio. Front. Aging Neurosci. 2023, 18, 1092990. [Google Scholar] [CrossRef]
- Peralta, M.; Ramos, M.; Lipert, A.; Martins, J.; Marques, A. Prevalence and trends of overweight and obesity in older adults from 10 European countries from 2005 to 2013. Scand. J. Public Health 2018, 46, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.H.; Petersen, C.L.; Fanous, M.M.; Spangler, H.B.; Kahkoska, A.R.; Jimenez, D.; Batsis, J. The relationship between multimorbidity, obesity and functional impairment in older adults. J. Am. Geriatr. Soc. 2022, 70, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Park, K.N.; Kim, S. Comparison of Grip Strength, Gait Speed, and Quality of Life among Obese, Overweight, and Nonobese Older Adults. Top. Geriatr. Rehabil. 2022, 38, 88–92. [Google Scholar] [CrossRef]
- Sulmont-Rossé, C.; Van Wymelbeke-Delannoy, V.; Maître, I. Prevalence of Undernutrition and Risk of Undernutrition in Overweight and Obese Older People. Front. Nutr. 2022, 9, 892675. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The Mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef]
- Mendes, J.; Borges, N.; Santos, A.; Padrão, P.; Moreira, P.; Afonso, C.; Negrão, R.; Amaral, T. Nutritional status and gait speed in a nationwide population-based sample of older adults. Sci. Rep. 2018, 8, 4227. [Google Scholar] [CrossRef] [PubMed]
- Saadeddine, D.; Itani, L.; Rossi, A.P.; Pellegrini, M.; El Ghoch, M. Strength and Performance Tests for Screening Reduced Muscle Mass in Elderly Lebanese Males with Obesity in Community Dwellings. Diseases 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Taing, K.Y.; Farkouh, M.E.; Moineddin, R.; Tu, J.V.; Jha, P. Comparative associations between anthropometric and bioelectric impedance analysis derived adiposity measures with blood pressure and hypertension in India: A cross-sectional analysis. BMC Obes. 2017, 1, 37. [Google Scholar] [CrossRef] [PubMed]
- Itani, L.; Tannir, H.; El Masri, D.; Kreidieh, D.; El Ghoch, M. Development of an Easy-to-Use Prediction Equation for Body Fat Percentage Based on BMI in Overweight and Obese Lebanese Adults. Diagnostics 2020, 10, 728. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Guyonnet, S.G.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E. Mini nutritional assessment. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Jomaa, L.; Hwalla, N.; Itani, L.; Chamieh, M.C.; Mehio-Sibai, A.; Naja, F. A Lebanese dietary pattern promotes better diet quality among older adults: Findings from a national cross-sectional study. BMC Geriatr. 2016, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows, version 26.0; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Castell, M.V.; Sánchez, M.; Julián, R.; Queipo, R.; Martín, S.; Otero, Á. Frailty prevalence and slow walking speed in persons age 65 and older: Implications for primary care. BMC Fam. Pract. 2013, 14, 86. [Google Scholar] [CrossRef]
- Stover, E.; Andrew, S.; Batesole, J.; Berntson, M.; Carling, C.; FitzSimmons, S.; Hoang, T.; Nauer, J.; McGrath, R. Prevalence and Trends of Slow Gait Speed in the United States. Geriatrics 2023, 8, 95. [Google Scholar] [CrossRef]
- Bibiloni, M.D.M.; Julibert, A.; Argelich, E.; Aparicio-Ugarriza, R.; Palacios, G.; Pons, A.; Gonzalez-Gross, M.; Tur, J. Western and Mediterranean Dietary Patterns and Physical Activity and Fitness among Spanish Older Adults. Nutrients 2017, 9, 704. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Houston, D.K.; Locher, J.L.; Ellison, K.J.; Gropper, S.; Buys, D.R.; Zizza, C. Higher Healthy Eating Index-2005 scores are associated with better physical performance. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kreidieh, D.; Itani, L.; El Kassas, G.; El Masri, D.; Calugi, S.; Dalle Grave, R.; El Ghoch, M. Long-term lifestyle-modification programs for overweight and obesity management in the Arab states: Systematic review and meta-analysis. Curr. Diabetes Rev. 2018, 14, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L. External validity, generalizability, and knowledge utilization. J. Nurs. Scholarsh. 2004, 36, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Louis, T.A.; Robins, J.; Dockery, D.W.; Spiro, A.; Ware, J. Explaining discrepancies between longitudinal and cross-sectional models. J. Chronic. Dis. 1987, 40, 369. [Google Scholar] [CrossRef] [PubMed]
- Custodero, C.; Agosti, P.; Anton, S.D.; Manini, T.M.; Lozupone, M.; Panza, F.; Pahor, M.; Sabbà, C.; Vincenzo Solfrizzi, V. Effect of Physical Activity Intervention on Gait Speed by Frailty Condition: A Randomized Clinical Trial. J. Am. Med. Dir. Assoc. 2023, 24, 489–496. [Google Scholar] [CrossRef]
- Ragland, D.R. Dichotomizing continuous outcome variables: Dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology 1992, 3, 434–440. [Google Scholar] [CrossRef]
- Boneva-Asiova, Z.; Boyanov, M. Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals. Diabetes Obes. Metab. 2008, 10, 1012–1018. [Google Scholar] [CrossRef]
- Barr, A.J. The biochemical basis of disease. Essays Biochem. 2018, 62, 619–642. [Google Scholar] [CrossRef]
Total (n = 222) | Slow Gait Speed (≤0.8 m/s) (n = 77) | Normal Gait Speed (>0.8 m/s) n = 145) | Significance | |
---|---|---|---|---|
Age (years) | 67.6 (6.6) | 70.5 (6.9) | 66.3 (5.9) | p < 0.0001 |
Sex | X2 = 20.86; p < 0.0001 | |||
Male | 113 (50.9) | 23 (29.9) | 90 (62.1) | |
Female | 109 (49.1) | 54 (70.1) | 55 (37.9) | |
Marital status | X2 = 27.59; p < 0.0001 | |||
Not married | 71 (32.0) | 42 (54.5) | 29 (20.0) | |
Married | 151 (68.0) | 35 (45.5) | 116(80.0) | |
Level of education | X2 = 0.666; p = 0.414 | |||
Lower education | 184 (82.9) | 66 (85.7) | 118 (81.4) | |
Higher education | 38 (17.1) | 11 (14.3) | 27 (18.6) | |
Employment | X2 = 8.776; p = 0.003 | |||
Not employed | 174 (78.4) | 69 (89.6) | 105 (72.4) | |
Employed | 48 (21.6) | 8 (10.4) | 40(27.6) | |
Weight (kg) | 82.2 (14.6) | 79.6 (15.8) | 83.6 (13.9) | p = 0.061 |
Height (cm) | 160.3 (9.6) | 155.9 (9.1) | 162.7 (8.9) | p < 0.0001 |
BMI (kg/m2) | 31.9 (4.5) | 32.6 (4.8) | 31.6 (4.3) | p = 0.114 |
BF (kg) | 27.2 (8.7) | 28.0 (8.1) | 26.7 (8.9) | p = 0.273 |
BF (%) | 32.8 (7.6) | 34.9 (6.3) | 31.7 (8.0) | p = 0.001 |
ALM (kg) | 22.5 (5.1) | 21.0 (5.1) | 23.4 (4.9) | p = 0.001 |
Total (n = 222) | Slow Gait Speed (≤0.8 m/s) (n = 77) | Normal Gait Speed (>0.8 m/s) (n = 145) | Significance | |
---|---|---|---|---|
Meals per day | X2 = 2.470; p = 0.116 | |||
1 meal | 15 (6.8) | 8 (10.4) | 7 (4.8) | |
≥2 meals | 207 (93.2) | 69(89.6) | 138 (95.2) | |
Protein intake per day | X2 = 4.671; p = 0.097 | |||
At least 1 source | 87 (39.2) | 36 (46.8) | 51 (35.2) | |
2 sources | 94 (42.3) | 32 (41.6) | 62 (42.8) | |
3 sources | 41 (18.5) | 9 (11.7) | 32 (22.1) | |
Fruit and vegetable intake per day | X2 = 2.640; p = 0.104 | |||
<2 servings a day | 71 (32.0) | 30 (39.0) | 41 (28.3) | |
≥2 servings a day | 151 (68.0) | 47 (61.0) | 104 (71.7) | |
Fluid intake per day | X2 = 0.004; p = 0.950 | |||
<3 cups | 37(16.7) | 13(16.9) | 24 (16.6) | |
3–5 cups | 185 (83.3) | 64 (83.1) | 121 (83.4) | |
Total DA score | 3.24 (1.10) | 2.99 (1.12) | 3.37 (1.07) | p = 0.017 |
X2 = 6.999; p = 0.008 | ||||
<Median | 129 (58.1) | 54 (70.1) | 75 (51.7) | |
≥Median | 93 (41.9) | 23 (29.9) | 70 (48.3) | |
Nutritional status | X2 = 5.612; p = 0.018 | |||
Normal | 190 (85.6) | 60 (77.9) | 130 (89.7) | |
At risk (Low DA) | 32 (14.4) | 17 (22.1) | 15 (10.3) |
Bivariate Analysis | Multivariable Regression | |||
---|---|---|---|---|
Variables | OR | 95%CI | OR | 95%CI |
Age (years) | 1.11 | 1.05–1.16 | 1.16 | 1.09–1.24 |
Sex | ||||
Female | 1.00 | |||
Male | 0.26 | 0.14–0.47 | 0.07 | 0.01–0.43 |
BMI (kg/m2) | 1.05 | 0.99–1.12 | 1.16 | 0.97–1.36 |
BF (%) | 1.06 | 1.02–1.10 | 0.90 | 0.80–1.00 |
ALM (kg) | 0.90 | 0.85–0.96 | 1.07 | 0.90–1.28 |
Marital status | ||||
Not married | 1.00 | |||
Married | 0.21 | 0.11–0.38 | 0.53 | 0.25–1.14 |
Employment | ||||
Not employed | ||||
Employed | 0.30 | 0.13–0.69 | 1.03 | 0.37–2.86 |
DA score | ||||
<Median | 1.00 | |||
≥Median | 0.46 | 0.25–0.82 | 0.25 | 0.11–0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itani, L.; Pellegrini, M.; Saadeddine, D.; Samouda, H.; Kreidieh, D.; Tannir, H.; El Ghoch, M. Association between Dietary Practice and Gait Speed in Community-Dwelling Older Adults with Overweight and Obesity: A Cross-Sectional Study. Diseases 2024, 12, 54. https://doi.org/10.3390/diseases12030054
Itani L, Pellegrini M, Saadeddine D, Samouda H, Kreidieh D, Tannir H, El Ghoch M. Association between Dietary Practice and Gait Speed in Community-Dwelling Older Adults with Overweight and Obesity: A Cross-Sectional Study. Diseases. 2024; 12(3):54. https://doi.org/10.3390/diseases12030054
Chicago/Turabian StyleItani, Leila, Massimo Pellegrini, Dana Saadeddine, Hanen Samouda, Dima Kreidieh, Hana Tannir, and Marwan El Ghoch. 2024. "Association between Dietary Practice and Gait Speed in Community-Dwelling Older Adults with Overweight and Obesity: A Cross-Sectional Study" Diseases 12, no. 3: 54. https://doi.org/10.3390/diseases12030054
APA StyleItani, L., Pellegrini, M., Saadeddine, D., Samouda, H., Kreidieh, D., Tannir, H., & El Ghoch, M. (2024). Association between Dietary Practice and Gait Speed in Community-Dwelling Older Adults with Overweight and Obesity: A Cross-Sectional Study. Diseases, 12(3), 54. https://doi.org/10.3390/diseases12030054