Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Ertanecept
3.2. Tocilizumab
3.3. Tocilizumab in Combination
3.4. TO-207
3.5. Ibrutinib
4. Discussion
5. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CRS | Cytokine release syndrome |
ICANS | Neurological toxicity syndrome associated with immunoeffector cell therapy |
CAR-T | T cells modified with antigen-specific chimeric receptor |
DLBCL | Diffuse large B-cell lymphoma |
AXICEL | Axicabtagene ciloleucel |
BREXU-CEL | Brexucabtagene autoleucel |
BREYANZI | Lisocabtagene maraleucel |
MCL | Mantle cell lymphoma |
B-ALL | B-cell acute lymphocytic leukemia |
IL | Interleukins |
TNF | Tumor necrosis factor |
IFN | Interferon |
MCP-1 | Monocyte chemotactic protein |
GM-CSF | Colony-stimulating factor of granulocytes and macrophages |
BBB | Blood–brain barrier |
RevMan | Review Manager |
MeSH | Medical Subject Headings |
CSF | Cerebrospinal fluid |
Appendix A. ASBMT Consensus on CRS Gradation
Parameter | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
Fever with/without Low Blood Pressure | ≥38 °C No | ≥38 °C Yes. No vasopressors required | ≥38 °C Yes. Requires vasopressor with or without vasopressin | ≥38 °C Yes. Requires multiple vasopressors (excluding vasopressin) |
And/or hypoxia | No | Requires nasal low-flow cannula | Requires nasal cannula with high flow, reservoir mask, or venturi mask with elevated oxygen inspiratory fraction. | Requires positive pressure (CPAP, BiPAP, intubation, or mechanical ventilation) |
Appendix B. ASBMT Consensus on ICANS Gradation
Neurotoxicity | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
ICE | 9–7 | 6–3 | 2–0 | 0 |
Level of consciousness | Awake | Responds to voice | Responds to tactile stimulus | Unconscious or requires vigorous stimulation. Stupor |
Seizures | No | No | Any type of seizure (focal or generalized) that resolves quickly or non-convulsive seizures (EEEg) that resolve without intervention | Convulsive or non-convulsive status without recovery of consciousness |
Motor deficit | No | No | No | Focal motor weakness: hemiparesis or paraparesis |
ELEVATION ICP/cerebral edema | No | No | Focal cerebral edema detected by CT or cranial MRI | Diffuse cerebral edema on CT or MRI. Brain damage or decorticated posture. Cushing’s triad |
Evaluation and monitoring | General recommendations: ICE scale every 4 h. Basal EEG, fundus, assessment of PL, CT, and/or MRI according to availability. Prophylaxis with levetiracetam. Avoid and treat hyponatremia. Avoid medication that causes depression of the central nervous system | Assess transfer to SMI: ICE score every hour. General recommendations described in grade 1 | Transfer to the SMI: ICE score every hour. Clinical assessment of signs of HITC. General recommendations described in grade 2 | Transfer to the SMI: Assess sedation, intubation, and mechanical ventilation for airway protection and/or seizure status control. General recommendations described in grade 3 [47] |
References
- Hunter, B.D.; Jacobson, C.A. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J. Natl. Cancer Inst. 2019, 111, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Moghanloo, E.; Mollanoori, H.; Talebi, M.; Pashangzadeh, S.; Faraji, F.; Hadjilooei, F.; Mahmoodzadeh, H. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl. Oncol. 2021, 14, 101070. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.E.; Vinent, J.; Muñoz, C.; Carreras, M.J. Hospital Pharmacist’s Roles and Responsibilities with CAR-T Medicines. Farm. Hosp. 2020, 44, 26–31. Available online: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1130-63432020000100006&lng=es (accessed on 8 April 2021).
- Chang, Z.L.; Chen, Y.Y. CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends Mol. Med. 2017, 23, 430–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halford, Z.; Anderson, M.K.; Bennett, L.L.; Moody, J. Tisagenlecleucel in Acute Lymphoblastic Leukemia: A Review of the Literature and Practical Considerations. Ann. Pharmacother. 2020, 55, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.T.; Kranz, D.M. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends Pharmacol. Sci. 2015, 37, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, N. The what, when and how of CAR T cell therapy for ALL. Best Pract. Res. Clin. Haematol. 2017, 30, 275–281. [Google Scholar] [CrossRef]
- Pan, J.; Yang, J.F.; Deng, B.P.; Zhao, X.J.; Zhang, X.; Lin, Y.H.; Wu, Y.N.; Deng, Z.L.; Zhang, Y.L.; Liu, S.H.; et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia 2017, 31, 2587–2593. [Google Scholar] [CrossRef]
- Hu, L.; Charwudzi, A.; Li, Q.; Zhu, W.; Tao, Q.; Xiong, S.; Zhai, Z. Anti-CD19 CAR-T cell therapy bridge to HSCT decreases the relapse rate and improves the long-term survival of R/R B-ALL patients: A systematic review and meta-analysis. Ann. Hematol. 2021, 100, 1003–1012. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Z.; Luo, Y.; Shi, J.; Yu, J.; Pu, C.; Liang, Z.; Wei, G.; Cui, Q.; Sun, J.; et al. Potent Anti-leukemia Activities of Chimeric Antigen Receptor–Modified T Cells against CD19 in Chinese Patients with Relapsed/Refractory Acute Lymphocytic Leukemia. Clin. Cancer Res. 2017, 23, 3297–3306. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, Z.; Liu, Y.; Han, W. New development in CAR-T cell therapy. J. Hematol. Oncol. 2017, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lu, X.-A.; Yang, J.; Zhang, G.; Li, J.; Song, L.; Su, Y.; Shi, Y.; Zhang, M.; He, J.; et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020, 4, 2325–2338. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhao, J. Cytokine release syndrome: Grading, modeling, and new therapy. J. Hematol. Oncol. 2018, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Köhl, U.; Abken, H. CAR-T cells as advanced therapy medicinal products. Internist 2021, 62, 449–457. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Lisocabtagene Maraleucel for Relapsed or Refractory Large B-Cell Lymphoma. U.S. Food and Drug Administration. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-lisocabtagene-maraleucel-relapsed-or-refractory-large-b-cell-lymphoma (accessed on 10 January 2021).
- Giavridis, T.; Van Der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef]
- Mahmoudjafari, Z.; Hawks, K.G.; Hsieh, A.A.; Plesca, D.; Gatwood, K.S.; Culos, K.A. American Society for Blood and Marrow Transplantation Pharmacy Special Interest Group Survey on Chimeric Antigen Receptor T Cell Therapy Administrative, Logistic, and Toxicity Management Practices in the United States. Biol. Blood Marrow Transplant. 2019, 25, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzal-Alfaro, M.B.; Escudero-Vilaplana, V.; Revuelta-Herrero, J.L.; Collado-Borrell, R.; Herranz-Alonso, A.; Sanjurjo-Saez, M. Chimeric Antigen Receptor T Cell Therapy Management and Safety: A Practical Tool From a Multidisciplinary Team Perspective. Front. Oncol. 2021, 11, 636068. [Google Scholar] [CrossRef]
- Kroschinsky, F.; Stölzel, F.; von Bonin, S.; Beutel, G.; Kochanek, M.; Kiehl, M.; Schellongowski, P. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care 2017, 21, 89. [Google Scholar] [CrossRef] [Green Version]
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Sheth, V.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant. 2020, 56, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Scholler, J.; Brady, T.L.; Binder-Scholl, G.; Hwang, W.-T.; Plesa, G.; Hege, K.M.; Vogel, A.N.; Kalos, M.; Riley, J.L.; Deeks, S.G.; et al. Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Sci. Transl. Med. 2012, 4, 132ra53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthier, J.; Turtle, C.J. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr. Res. Transl. Med. 2018, 66, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.; Nagle, S.; Randall, J.; Hinson, H. Chimeric Antigen Receptor T Cell-Related Neurotoxicity: Mechanisms, Clinical Presen-tation, and Approach to Treatment. Curr. Treat. Options Neurol. 2019, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Frey, N.; Porter, D. Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2018, 25, e123–e127. [Google Scholar] [CrossRef] [Green Version]
- Catino, A.B. Cytokines Are at the Heart of It: Cytokine Release Syndrome Underlies Cardiovascular Effects of CAR T Cell. JACC CardioOnc. 2020, 2, 204–206. [Google Scholar] [CrossRef]
- Agustí, M.A.; Alcaraz, M.; Bello, J.L.; Calvo, G.; Camarero, J.; Duarte, R.F.; Galloso, J.; Juan, M.; Lozano, A. Clinical Protocol for the Management of Serious Adverse Effects in Patients Treated with CAR-T 19. 2019. Available online: https://www.mscbs.gob.es/profesionales/farmacia/pdf/20190508_Protocolo_manejo_efectos_adversos_CAR_T.pdf (accessed on 2 February 2021).
- Suarez Montero, J.; Caballero Gonzalez, A.; Martín Aguilar, L.; Mancebo Cortés, J. Neurotoxicity syndrome associated with im-munoeffector cells: A therapeutic approach in the critical patient. Intensive Med. 2020, 46, 201–212. [Google Scholar]
- Varadarajan, I.; Kindwall-Keller, T.; Lee, D. Management of Cytokine Release Syndrome. Chimeric Antigen Receptor T-Cell Therapies for Cancer; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–64. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef] [Green Version]
- Kotch, C.; Barrett, D.; Teachey, D.T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev. Clin. Immunol. 2019, 15, 813–822. [Google Scholar] [CrossRef]
- Evidence for Use of Siltuximab or Anakinra as Second Line Therapies (after Failure of Tocilizumab) for Cytokine Release Syn-drome Following Use of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. SPS—Specialist Pharmacy Service. Available online: https://www.sps.nhs.uk/articles/evidence-for-use-of-siltuximab-or-anakinra-as-second-line-therapies-after-failure-of-tocilizumab-for-cytokine-release-syndrome-following-use-of-chimeric-antigen-receptor-t-cell-car-t-therapy/ (accessed on 5 February 2021).
- The World Medical Association. Declaración de Helsinki de la AMM—Principios Éticos para las Investigaciones Médicas en seres Humanos. wma.net. 2022. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 4 July 2022).
- Resources for Authors—Develop Reviews. es.cochrane.org. 2021. Available online: https://es.cochrane.org/es/recursos-para-autores-elaborar-revisiones (accessed on 8 April 2021).
- Zhang, L.; Wang, S.; Xu, J.; Zhang, R.; Zhu, H.; Wu, Y.; Zhu, L.; Li, J.; Chen, L. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp. Hematol. Oncol. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, F.; Zhang, P.; Zhang, Y.; Chen, Y.; Fan, X.; Cao, X.; Liu, J.; Yang, Y.; Wang, B.; et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front. Med. 2019, 13, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Jatiani, S.S.; Aleman, A.; Madduri, D.; Chari, A.; Cho, H.J.; Richard, S.; Richter, J.; Brody, J.; Jagannath, S.; Parekh, S. Myeloma CAR-T CRS Management With IL-1R Antagonist Anakinra. Clin. Lymphoma Myeloma Leuk. 2020, 20, 632–636.e1. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Brown, A.R.T.; Herr, M.M.; Kadri, S.S.; Hill, B.; Rajendram, P.; Duggal, A.; Turtle, C.J.; Patel, K.; Lin, Y.; et al. The chimeric antigen receptor-intensive care unit (CAR-ICU) initiative: Surveying intensive care unit practices in the management of CAR T-cell associated toxicities. J. Crit. Care 2020, 58, 58–64. [Google Scholar] [CrossRef]
- Zhu, F.; Wei, G.; Zhang, M.; Zhao, H.; Wu, W.; Yang, L.; Hu, Y.; Huang, H. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020, 29, 0963689720919434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Teachey, D.; Pequignot, E.; Frey, N.; Porter, D.; Maude, S.L.; Grupp, S.A.; June, C.H.; Melenhorst, J.J.; Lacey, S.F. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 2016, 434, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Geyer, M.B.; Rivière, I.; Sénéchal, B.; Wang, X.; Wang, Y.; Purdon, T.J.; Hsu, M.; Devlin, S.M.; Palomba, M.L.; Halton, E.; et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight 2019, 4, e122627. [Google Scholar] [CrossRef]
- Abboud, R.; Keller, J.; Slade, M.; DiPersio, J.F.; Westervelt, P.; Rettig, M.; Meier, S.; Fehniger, T.A.; Abboud, C.N.; Uy, G.; et al. Severe Cytokine-Release Syndrome after T Cell–Replete Peripheral Blood Haploidentical Donor Transplantation Is Associated with Poor Survival and Anti–IL-6 Therapy Is Safe and Well Tolerated. Biol. Blood Marrow Transplant. 2016, 22, 1851–1860. [Google Scholar] [CrossRef] [Green Version]
- Futami, M.; Suzuki, K.; Kato, S.; Ohmae, S.; Tahara, Y.; Nojima, M.; Imai, Y.; Mimura, T.; Watanabe, Y.; Tojo, A. The novel multi-cytokine inhibitor TO-207 specifically inhibits pro-inflammatory cytokine secretion in monocytes without affecting the killing ability of CAR T cells. PLoS ONE 2020, 15, e0231896. [Google Scholar] [CrossRef] [Green Version]
- Abramson, J.; Palomba, M.; Gordon, L.; Lunning, M.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, E.; Gentille, C.; Trachtenberg, B.; Pingali, S.; Anand, K. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Nagle, S.J.; Murphree, C.; Raess, P.W.; Do, L.S.; Chen, A.; Hayes-Lattin, B.; Nemecek, E.; Maziarz, R.T. Prolonged hematologic toxicity following treatment with chimeric antigen receptor T cells in patients with hematologic malignancies. Am. J. Hematol. 2021, 96, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2017, 15, 47–62. [Google Scholar] [CrossRef]
- Nishimoto, N.; Terao, K.; Mima, T.; Nakahara, H.; Takagi, N.; Kakehi, T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti–IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 2008, 112, 3959–3964. [Google Scholar] [CrossRef]
- Nellan, A.; McCully, C.M.L.; Garcia, R.C.; Jayaprakash, N.; Widemann, B.C.; Lee, D.W.; Warren, K.E. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood 2018, 132, 662–666. [Google Scholar] [CrossRef]
- Rivera, A.M.; May, S.; Lei, M.; Qualls, S.; Bushey, K.; Rubin, D.B.; Barra, M.E. CAR T-Cell-Associated Neurotoxicity. Crit. Care Nurs. Q. 2020, 43, 191–204. [Google Scholar] [CrossRef]
- Acharya, U.; Dhawale, T.; Yun, S.; Jacobson, C.; Chavez, J.; Ramos, J.; Appelbaum, J.; Maloney, D.G. Management of cytokine release syndrome and neuro-toxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev. Hematol. 2019, 12, 195–205. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Locke, F.L.; Lin, Y.; Jain, N.; Daver, N.; Gulbis, A.M.; Adkins, S.; et al. Toxicity management after chimeric antigen receptor T cell therapy: One size does not fit ‘ALL’. Nat. Rev. Clin. Oncol. 2018, 15, 218. [Google Scholar] [CrossRef]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Riegler, L.L.; Jones, G.P.; Lee, D.W. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther. Clin. Risk Manag. 2019, 15, 323–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.C.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 2016, 3, 16011. [Google Scholar] [CrossRef]
- Uesato, N.; Fukui, K.; Maruhashi, J.; Tojo, A.; Tajima, N. JTE-607, a multiple cytokine production inhibitor, ameliorates disease in a SCID mouse xenograft acute myeloid leukemia model. Exp. Hematol. 2006, 34, 1385–1392. [Google Scholar] [CrossRef]
- Kakegawa, J.; Sakane, N.; Suzuki, K.; Yoshida, T. JTE-607, a multiple cytokine production inhibitor, targets CPSF3 and inhibits pre-mRNA processing. Biochem. Biophys. Res. Commun. 2019, 518, 32–37. [Google Scholar] [CrossRef]
- Fan, F.; Yoo, H.J.; Stock, S.; Wang, L.; Liu, Y.; Schubert, M.-L.; Wang, S.; Neuber, B.; Hückelhoven-Krauss, A.; Gern, U.; et al. Ibrutinib for improved chimeric antigen receptor T-cell production for chronic lymphocytic leukemia patients. Int. J. Cancer 2020, 148, 419–428. [Google Scholar] [CrossRef]
- Fraietta, J.; Beckwith, K.; Patel, P.; Ruella, M.; Zheng, Z.; Barrett, D.; Lacey, S.F.; Melenhorst, J.J.; McGettigan, S.E.; Cook, D.R.; et al. Ibrutinib enhances chimeric antigen receptor T-cell en-graftment and efficacy in leukemia. Blood 2016, 127, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Turtle, C.J.; Hay, K.; Hanafi, L.-A.; Li, D.; Cherian, S.; Chen, X.; Wood, B.; Lozanski, A.; Byrd, J.C.; Heimfeld, S.; et al. Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib. J. Clin. Oncol. 2017, 35, 3010–3020. [Google Scholar] [CrossRef]
- Gauthier, J.; Hirayama, A.V.; Purushe, J.; Hay, K.A.; Lymp, J.; Li, D.H.; Yeung, C.C.S.; Sheih, A.; Pender, B.S.; Hawkins, R.M.; et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 2020, 135, 1650–1660. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Ali, L.A.; A Shim, J.; Lee, B.H.; Hong, C. Innovative CAT-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield. Cancers 2020, 12, 2087. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int. J. Biol. Sci. 2019, 15, 2548–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez Rodríguez, A.; Mendoza-Rincón, J. Natural killer cells with the chimeric antigen receptor (CAR-NK). Nova 2021, 19, 11–24. [Google Scholar] [CrossRef]
- Mendoza-Pinto, C.; García-Carrasco, M.; Munguía Realpozo, P.; Méndez-Martínez, S. Therapeutic options in the management of severe COVID-19: A perspective of Rheumatology. Clin. Rheumatol. 2020, 8, 431–436. [Google Scholar] [CrossRef]
- Figuero-Pérez, L.; Olivares-Hernández, A.; Escala-Cornejo, R.; Terán-Brage, E.; López-Gutiérrez, Á.; Cruz-Hernández, J. Anakinra, a potential alternative in the treatment of severe respiratory infection by SARS-CoV-2 refractory to tocilizumab. Clin. Rheumatol. 2021, 17, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Díaz, E.; Amézaga Menéndez, R.; Vidal Cortés, P.; Escapa, M.; Suberviola, B.; Serrano Lázaro, A.; Neira, P.M.; Díaz, M.Q.; Gonzálezi, M.C. Pharmacological treatment of COVID-19: Narrative review of the Infectious Diseases and Sepsis Working Groups (GTEIS) and the Blood Derivative Transfusions Working Group (GTTH). Intensive Med. 2021, 45, 104–121. [Google Scholar] [CrossRef]
- Gritti, G.; Raimondi, F.; Bottazzi, B.; Ripamonti, D.; Riva, I.; Landi, F.; Alborghetti, L.; Frigeni, M.; Damiani, M.; Micò, C.; et al. Siltuximab downregulates interleukin-8 and pentraxin 3 to improve ventilatory status and survival in severe COVID-19. Leukemia 2021, 35, 2710–2714. [Google Scholar] [CrossRef]
First Author | Studio Design | Sample Size (n) | Drug | Main Results |
---|---|---|---|---|
Zhang et al. [37] | Case report | 8 patients (4 men and 4 women) | Ertanecept | Patients who presented CRS after CAR-T infusion therapy were treated with ertanecept, which mitigated the fever, hypotension, and arthralgia due to decreases in TNF-α. (* p = 0.03), IL-6 (* p = 0.007), and IL-10 (* p = 0.01) Ertanecept, a TNF-α inhibitor, is able to resolve CRS without causing side effects or decreasing the effectiveness of CAR-T therapy (p > 0.05). |
Chen et al. [38] | Case report | 4 patients (3 men and 1 woman) | Tocilizumab | Tocilizumab was able to reduce the altered levels of IL-2R, IL-6, IL-8, IL-10, and TNF-α in 2 of the 4 patients. The use of tocilizumab at low doses (4 mg/kg) may be useful for patients with CRS of mild or moderate severity. The use of tocilizumab at high doses (8 mg/kg) would be indicated in patients suffering from persistent fever, hypotensive shock, acute respiratory failure, and rapid progression of LCHS. Even if symptoms do not improve within 8–24 h, another dose of tocilizumab may be given (2 of 4 patients). |
Jatiani et al. [39] | Case report | 2 patients (2 men) | Anakinra and tocilizumab | The administration of anakinra as anti-IL-1R therapy limits the development and duration of CRS when administered as an adjunct to tocilizumab and decreases the need for additional doses of tocilizumab or steroids (immunosuppressant) (1 of 2 patients). |
Gutierrez et al. [40] | Cutting studio | 11 centers Unknown patients | Anakinra, siltuximab, and tocilizumab | Among the 11 hospitals that made up the study, the specific practices performed for the treatment of toxicities included the use of tocilizumab to treat CRS and neurotoxicity with symptoms of CRS (82% of centers; n = 9). The use of siltuximab for grade 3 or 4 CRS refractory to tocilizumab (55% of centers; n = 6) The use of anakinra in CRS grade 3 or 4, refractory to tocilizumab, and in neurotoxicity (55% of centers; n = 6). |
Feng et al. [41] | Cohort study | 89 patients (48 men and 41 women) | Tocilizumab | Treatment with tocilizumab allows CAR-T cells to be safely administered in all and without compromising the efficacy of therapy (p = 0.061). Treatment with tocilizumab (0.377; 95% CI 0.001–0.033; * p = 0.040) is considered an independent risk factor associated with total cost during CAR-T therapy due to its use with CRS. |
Chen et al. [42] | Comparative study | 4 patients (1 male and 3 female) | Siltuximab and tocilizumab | The addition of siltuximab reduces IL-6 concentrations by 56% to 74% in patients undergoing CAR-T therapy (* p = 0.001). Tocilizumab caused a small but statistically significant reduction in sIL-6R concentrations to between 51% and 70%. |
Geyer et al. [43] | Clinical trial | 20 patients (14 men and 6 women) | Ibrutinib and tocilizumab | Ibrutinib causes an increase in the levels of IL-6 (* p = 0.01) and IL-10 (* p = 0.02) that predisposes the patient to the appearance of CRS of grade 2 or higher. Take ibrutinib prior to CAR-T therapy predisposes the patient to further cell expansion. (p = 0.040) 80% of patients with CLL who took ibrutinib had objective responses after CAR-T therapy. Of the 5 patients who received ibrutinib prior to the infusion of CAR-T therapy, 3 required tocilizumab to reverse grade 2 or 3 CRS. |
Abboud et al. [44] | Cohort study | 75 patients (40 men and 35 women) | Siltuximab and tocilizumab | 7 patients with CRS were treated with tocilizumab. Of these, 100% resolved signs and symptoms within 48 h, CRP levels fell below 50% of the peak values, and 86% (6 of 7) survived for 100+ days, including those with severe CRS. IL-6 is a key mediator for CRS, so tocilizumab and siltuximab are possible effective therapeutic approaches. |
Futami et al. [45] | Clinical trial | In vitro study. Unknown volunteers | TO-207 | New multi-cytosine inhibitor TO-207 has modest effects on cytokine secretion in CAR-T cells (* p < 0.001) TO-207 specifically inhibits pro-inflammatory cytokines of monocytes (IL-6, IL-8, IL-18, MCP-1, and TNF-α) without affecting cytokine production, or CAR-T cell efficacy |
Abramson et al. [46] | Multicenter multi-cohort study | 269 patients (174 men and 95 women) | Anakinra, siltuximab, and tocilizumab | Tocilizumab was useful in treating LSS in 53 patients (50% of those with CRS). Siltuximab and anakinra may be effective as a treatment for grade 4 CRS (used in the only patient who had grade 4 CRS). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreros, P.; Trapero, I. Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases 2022, 10, 41. https://doi.org/10.3390/diseases10030041
Ferreros P, Trapero I. Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases. 2022; 10(3):41. https://doi.org/10.3390/diseases10030041
Chicago/Turabian StyleFerreros, Puri, and Isabel Trapero. 2022. "Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy" Diseases 10, no. 3: 41. https://doi.org/10.3390/diseases10030041
APA StyleFerreros, P., & Trapero, I. (2022). Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases, 10(3), 41. https://doi.org/10.3390/diseases10030041