Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression
Abstract
:1. Introduction
2. Methods
3. Biomarkers with Increased Concentration in Sarcopenia
3.1. Uric Acid
3.2. Carnitine
3.3. C-Reactive Protein
3.4. Urinary Levels of Titin-N Fragment
3.5. Leptin
3.6. Creatinine
4. Biomarkers with Decreased Concentration in Sarcopenia
4.1. Vitamin D
4.2. n-3 Fatty Acids
4.3. Antioxidants
4.4. 3-Methylhistidine
4.5. Visceral Proteins
4.6. Insulin-like Growth Factor (IGF-1)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senior, H.E.; Henwood, T.R.; Beller, E.M.; Mitchell, G.K.; Keogh, J.W.L. Prevalence and Risk Factors of Sarcopenia among Adults Living in Nursing Homes. Maturitas 2015, 82, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, D.; Cho, L.M.; Jani, P.; St Jeor, S.T. Individualizing Recommendations for Weight Management in the Elderly. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Short, K.R.; Vittone, J.L.; Bigelow, M.L.; Proctor, D.N.; Nair, K.S. Age and Aerobic Exercise Training Effects on Whole Body and Muscle Protein Metabolism. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E92–E101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, S.K.; Tsintavis, P.; Potsaki, G.; Papandreou, D. Differences in the Prevalence of Sarcopenia in Community-Dwelling, Nursing Home and Hospitalized Individuals. A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Abellan Van Kan, G.; Cedarbaum, J.M.; Cesari, M.; Dahinden, P.; Fariello, R.G.; Fielding, R.A.; Goodpaster, B.H.; Hettwer, S.; Isaac, M.; Laurent, D.; et al. Sarcopenia: Biomarkers and Imaging (International Conference on Sarcopenia Research). J. Nutr. Health Aging 2011, 15, 834–846. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hou, L.; Zhang, Y.; Dong, B. Analysis of the Prevalence of Sarcopenia and Its Risk Factors in the Elderly in the Chengdu Community. J. Nutr. Health Aging 2021, 25, 600–605. [Google Scholar] [CrossRef]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of Sarcopenia as a Comorbid Disease: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Bonato, M.; Turrini, F.; Galli, L.; Banfi, G.; Cinque, P. The Role of Physical Activity for the Management of Sarcopenia in People Living with HIV. Int. J. Environ. Res. Public Health 2020, 17, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marhold, M.; Topakian, T.; Unseld, M. Sarcopenia in Cancer—A Focus on Elderly Cancer Patients. Mag. Eur. Med. Oncol. 2021, 14, 20–23. [Google Scholar] [CrossRef]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in Sarcopenia: A Multifactorial Approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Hwang, H.; Kim, S.-K.; Choi, J.Y.; Lee, S.-M.; Bang, H.; Kwon, E.-S.; Lee, K.-P.; Chung, S.G.; Kwon, K.-S. Prediction of Sarcopenia Using a Combination of Multiple Serum Biomarkers. Sci. Rep. 2018, 8, 8574. [Google Scholar] [CrossRef]
- Bo, Y.; Liu, C.; Ji, Z.; Yang, R.; An, Q.; Zhang, X.; You, J.; Duan, D.; Sun, Y.; Zhu, Y.; et al. A High Whey Protein, Vitamin D and E Supplement Preserves Muscle Mass, Strength, and Quality of Life in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. Clin. Nutr. 2019, 38, 159–164. [Google Scholar] [CrossRef]
- Lin, C.-C.; Shih, M.-H.; Chen, C.-D.; Yeh, S.-L. Effects of Adequate Dietary Protein with Whey Protein, Leucine, and Vitamin D Supplementation on Sarcopenia in Older Adults: An Open-Label, Parallel-Group Study. Clin. Nutr. 2021, 40, 1323–1329. [Google Scholar] [CrossRef]
- Verlaan, S.; Maier, A.B.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; et al. Sufficient Levels of 25-Hydroxyvitamin D and Protein Intake Required to Increase Muscle Mass in Sarcopenic Older Adults—The PROVIDE Study. Clin. Nutr. 2018, 37, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [Green Version]
- Bosaeus, I.; Rothenberg, E. Nutrition and Physical Activity for the Prevention and Treatment of Age-Related Sarcopenia. Proc. Nutr. Soc. 2016, 75, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Cox, N.J.; Morrison, L.; Ibrahim, K.; Robinson, S.M.; Sayer, A.A.; Roberts, H.C. New Horizons in Appetite and the Anorexia of Ageing. Age Ageing 2020, 49, 526–534. [Google Scholar] [CrossRef]
- Krause, M.; Crognale, D.; Cogan, K.; Contarelli, S.; Egan, B.; Newsholme, P.; De Vito, G. The Effects of a Combined Bodyweight-Based and Elastic Bands Resistance Training, with or without Protein Supplementation, on Muscle Mass, Signaling and Heat Shock Response in Healthy Older People. Exp. Gerontol. 2019, 115, 104–113. [Google Scholar] [CrossRef]
- Mills, S.; Candow, D.G.; Forbes, S.C.; Neary, J.P.; Ormsbee, M.J.; Antonio, J. Effects of Creatine Supplementation during Resistance Training Sessions in Physically Active Young Adults. Nutrients 2020, 12, 1880. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Synergistic Effect of Bodyweight Resistance Exercise and Protein Supplementation on Skeletal Muscle in Sarcopenic or Dynapenic Older Adults. Geriatr. Gerontol. Int. 2019, 19, 429–437. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Sirago, G.; Coelho-Junior, H.J.; Marzetti, E. Molecular Routes to Sarcopenia and Biomarker Development: Per Aspera Ad Astra. Curr. Opin. Pharmacol. 2021, 57, 140–147. [Google Scholar] [CrossRef]
- Berridge, B.R.; Van Vleet, J.F.; Herman, E. Chapter 46 Cardiac, Vascular, and Skeletal Muscle Systems. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1567–1665. [Google Scholar] [CrossRef]
- Kochlik, B.; Gerbracht, C.; Grune, T.; Weber, D. The Influence of Dietary Habits and Meat Consumption on Plasma 3-Methylhistidine—A Potential Marker for Muscle Protein Turnover. Mol. Nutr. Food Res. 2018, 62, 1701062. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.K.; Lapidus, J.A.; Cawthon, P.M.; Dam, T.-T.L.; Sakai, L.Y.; Marshall, L.M. Serum Albumin in Relation to Change in Muscle Mass, Muscle Strength, and Muscle Power in Older Men. J. Am. Geriatr Soc. 2012, 60, 1663–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; Tylavsky, F.A.; Nevitt, M.C.; Harris, T.B. Lower Serum Albumin Concentration and Change in Muscle Mass: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marín-Ciancas, F.; Malafarina, V. Serum Albumin and Health in Older People: Review and Meta Analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Takeda, H.; Ishihama, K.; Fukui, T.; Fujishima, S.; Orii, T.; Nakazawa, Y.; Shu, H.-J.; Kawata, S. Significance of Rapid Turnover Proteins in Protein-Losing Gastroenteropathy. Hepatogastroenterology 2003, 50, 1963–1965. [Google Scholar]
- Takagi, A.; Hawke, P.; Tokuda, S.; Toda, T.; Higashizono, K.; Nagai, E.; Watanabe, M.; Nakatani, E.; Kanemoto, H.; Oba, N. Serum Carnitine as a Biomarker of Sarcopenia and Nutritional Status in Preoperative Gastrointestinal Cancer Patients. J. Cachexia Sarcopenia Muscle 2022, 13, 287–295. [Google Scholar] [CrossRef]
- Kameda, M.; Teruya, T.; Yanagida, M.; Kondoh, H. Reduced Uremic Metabolites Are Prominent Feature of Sarcopenia, Distinct from Antioxidative Markers for Frailty. Aging 2021, 13, 20915–20934. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Ferrucci, L.; Sun, K.; Walston, J.; Varadhan, R.; Guralnik, J.M.; Fried, L.P. Oxidative Stress and Severe Walking Disability among Older Women. Am. J. Med. 2007, 120, 1084–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Dayhoff-Brannigan, M.; Lauretani, F.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L. Carotenoids as Protection against Disability in Older Persons. Rejuvenation Res. 2008, 11, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokri-Mashhadi, N.; Moradi, S.; Heidari, Z.; Saadat, S. Association of Circulating C-Reactive Protein and High-Sensitivity C-Reactive Protein with Components of Sarcopenia: A Systematic Review and Meta-Analysis of Observational Studies. Exp. Gerontol. 2021, 150, 111330. [Google Scholar] [CrossRef]
- Asoudeh, F.; Dashti, F.; Raeesi, S.; Heshmat, R.; Bidkhori, M.; Jalilian, Z.; Hashemi, R. Inflammatory Cytokines and Sarcopenia in Iranian Adults-Results from SARIR Study. Sci. Rep. 2022, 12, 5471. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Visser, M. Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. Am. J. Med. 2006, 119, 526.e9–526.e17. [Google Scholar] [CrossRef]
- Shenkin, A.; Cederblad, G.; Elia, M.; Isaksson, B. Laboratory Assessment of Protein-Energy Status. Clin. Chim. Acta 1996, 253, S5–S59. [Google Scholar] [CrossRef]
- Ohlsson, C.; Mohan, S.; Sjögren, K.; Tivesten, Å.; Isgaard, J.; Isaksson, O.; Jansson, J.-O.; Svensson, J. The Role of Liver-Derived Insulin-Like Growth Factor-I. Endocr. Rev. 2009, 30, 494–535. [Google Scholar] [CrossRef] [Green Version]
- Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between Sarcopenia and Levels of Growth Hormone and Insulin-like Growth Factor-1 in the Elderly. BMC Musculoskelet. Disord. 2020, 21, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, R.H. Longevity, Lipotoxicity and Leptin: The Adipocyte Defense against Feasting and Famine. Biochimie 2005, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators Linking Adipose Tissue, Inflammation and Immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Chen, W.-L. Examining the Association Between Serum Leptin and Sarcopenic Obesity. JIR 2021, 14, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.-Y.; Jung, H.-W.; Park, J.H.; Kim, J.H.; Lee, S.; Lee, E.; Lee, J.Y.; Park, S.J.; Kim, D.A.; Kim, S.J.; et al. Lower Serum N-3 Fatty Acid Level in Older Adults with Sarcopenia. Nutrients 2020, 12, 2959. [Google Scholar] [CrossRef]
- Beck, F.K.; Rosenthal, T.C. Prealbumin: A Marker for Nutritional Evaluation. AFP 2002, 65, 1575. [Google Scholar]
- Ingenbleek, Y. Plasma Transthyretin as A Biomarker of Sarcopenia in Elderly Subjects. Nutrients 2019, 11, 895. [Google Scholar] [CrossRef] [Green Version]
- Sergi, G.; Coin, A.; Enzi, G.; Volpato, S.; Inelmen, E.M.; Buttarello, M.; Peloso, M.; Mulone, S.; Marin, S.; Bonometto, P. Role of Visceral Proteins in Detecting Malnutrition in the Elderly. Eur. J. Clin. Nutr. 2006, 60, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-L.; Yang, K.-C.; Chang, H.-H.; Lee, L.-T.; Lu, C.-W.; Huang, K.-C. Low Serum Selenium Level Is Associated With Low Muscle Mass in the Community-Dwelling Elderly. J. Am. Med. Dir. Assoc. 2014, 15, 807–811. [Google Scholar] [CrossRef]
- Li, R.; Yu, K.; Li, C. Dietary Factors and Risk of Gout and Hyperuricemia: A Meta-Analysis and Systematic Review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef]
- Lee, K.; Shin, Y.; Huh, J.; Sung, Y.S.; Lee, I.-S.; Yoon, K.-H.; Kim, K.W. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J. Radiol. 2019, 20, 205. [Google Scholar] [CrossRef]
- Macchi, C.; Molino-Lova, R.; Polcaro, P.; Guarducci, L.; Lauretani, F.; Cecchi, F.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. Higher Circulating Levels of Uric Acid Are Prospectively Associated with Better Muscle Function in Older Persons. Mech. Ageing Dev. 2008, 129, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Nahas, P.C.; Rossato, L.T.; Branco, F.M.S.D.; Azeredo, C.M.; Rinaldi, A.E.M.; de Oliveira, E.P. Serum Uric Acid Is Positively Associated with Muscle Strength in Older Men and Women: Findings from NHANES 1999–2002. Clin. Nutr. 2021, 40, 4386–4393. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Shimoda, M.; Udo, R.; Oshiro, Y.; Suzuki, S. Urinary Titin N-Terminal Fragment Concentration Is an Indicator of Preoperative Sarcopenia and Nutritional Status in Patients with Gastrointestinal Tract and Hepatobiliary Pancreatic Malignancies. Nutrition 2020, 79–80, 110957. [Google Scholar] [CrossRef] [PubMed]
- Bjørnsen, T.; Salvesen, S.; Berntsen, S.; Hetlelid, K.J.; Stea, T.H.; Lohne-Seiler, H.; Rohde, G.; Haraldstad, K.; Raastad, T.; Køpp, U.; et al. Vitamin C and E Supplementation Blunts Increases in Total Lean Body Mass in Elderly Men after Strength Training. Scand. J. Med. Sci. Sports 2016, 26, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Agergaard, J.; Trøstrup, J.; Uth, J.; Iversen, J.V.; Boesen, A.; Andersen, J.L.; Schjerling, P.; Langberg, H. Does Vitamin-D Intake during Resistance Training Improve the Skeletal Muscle Hypertrophic and Strength Response in Young and Elderly Men?—A Randomized Controlled Trial. Nutr. Metab. 2015, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Caristia, S.; Filigheddu, N.; Barone-Adesi, F.; Sarro, A.; Testa, T.; Magnani, C.; Aimaretti, G.; Faggiano, F.; Marzullo, P. Vitamin D as a Biomarker of Ill-Health among the Over-50s: A Systematic Review of Cohort Studies. Nutrients 2019, 11, 2384. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.-J.; Yu, L.-J. Oxidative Stress, Molecular Inflammation and Sarcopenia. Int. J. Mol. Sci. 2010, 11, 1509–1526. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, R.; Ninomiya, D.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T.; Abe, M. Serum Uric Acid Is Positively Associated with Handgrip Strength among Japanese Community-Dwelling Elderly Women. PLoS ONE 2016, 11, e0151044. [Google Scholar] [CrossRef]
- Ruiz, M.; Labarthe, F.; Fortier, A.; Bouchard, B.; Legault, J.T.; Bolduc, V.; Rigal, O.; Chen, J.; Ducharme, A.; Crawford, P.A.; et al. Circulating Acylcarnitine Profile in Human Heart Failure: A Surrogate of Fatty Acid Metabolic Dysregulation in Mitochondria and Beyond. Am. J. Physiol.—Cell Physiol. 2017, 313, 768–781. [Google Scholar] [CrossRef] [Green Version]
- Kemp, P.R.; Paul, R.; Hinken, A.C.; Neil, D.; Russell, A.; Griffiths, M.J. Metabolic Profiling Shows Pre-Existing Mitochondrial Dysfunction Contributes to Muscle Loss in a Model of ICU-Acquired Weakness. J. Cachexia Sarcopenia Muscle 2020, 11, 1321–1335. [Google Scholar] [CrossRef]
- Smidowicz, A.; Regula, J. Effect of Nutritional Status and Dietary Patterns on Human Serum C-Reactive Protein and Interleukin-6 Concentrations. Adv. Nutr. 2015, 6, 738–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wåhlin-Larsson, B.; Wilkinson, D.J.; Strandberg, E.; Hosford-Donovan, A.; Atherton, P.J.; Kadi, F. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly. CPB 2017, 44, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeong, K.; Lee, S.; Baek, Y. Relationship between Low Vegetable Consumption, Increased High-Sensitive C-Reactive Protein Level, and Cardiometabolic Risk in Korean Adults with Tae-Eumin: A Cross-Sectional Study. Evid.-Based Complementary Altern. Med. 2021, 2021, e3631445. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Mason, M.A.; Allegro, D.; Zonderman, A.B.; Evans, M.K. Diet Quality Is Inversely Associated with C-Reactive Protein Levels in Urban, Low-Income African-American and White Adults. J. Acad. Nutr. Diet. 2013, 113, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Granzier, H.L.; Labeit, S. The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease. Circ. Res. 2004, 94, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Oshida, N.; Shida, T.; Oh, S.; Kim, T.; Isobe, T.; Okamoto, Y.; Kamimaki, T.; Okada, K.; Suzuki, H.; Ariizumi, S.; et al. Urinary Levels of Titin-N Fragment, a Skeletal Muscle Damage Marker, Are Increased in Subjects with Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019, 9, 19498. [Google Scholar] [CrossRef]
- Kwon, H.; Pessin, J.E. Adipokines Mediate Inflammation and Insulin Resistance. Front. Endocrinol. 2013, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.M. Sarcopenia and Sarcopenic Obesity. Korean J. Intern. Med. 2016, 31, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Schrager, M.A.; Metter, E.J.; Simonsick, E.; Ble, A.; Bandinelli, S.; Lauretani, F.; Ferrucci, L. Sarcopenic Obesity and Inflammation in the InCHIANTI Study. J. Appl. Physiol. 2007, 102, 919–925. [Google Scholar] [CrossRef]
- Roubenoff, R.; Freeman, L.M.; Smith, D.E.; Abad, L.W.; Dinarello, C.A.; Kehayias, J.J. Adjuvant Arthritis as a Model of Inflammatory Cachexia. Arthritis Rheum 1997, 40, 534–539. [Google Scholar] [CrossRef]
- Virgili, F.; Maiani, G.; Zahoor, Z.H.; Ciarapica, D.; Raguzzini, A.; Ferro-Luzzi, A. Relationship between Fat-Free Mass and Urinary Excretion of Creatinine and 3-Methylhistidine in Adult Humans. J. Appl. Physiol. 1994, 76, 1946–1950. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Adamek, M.; Gonzalez, M.C.; Jia, G.; Thomas, D.M. Assessing Skeletal Muscle Mass: Historical Overview and State of the Art. J. Cachexia Sarcopenia Muscle 2014, 5, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.W.; Wolf, S.E.; Chinkes, D.L.; Gore, D.C.; Mlcak, R.P.; Beauford, R.B.; Obeng, M.K.; Lal, S.; Gold, W.F.; Wolfe, R.R.; et al. Determinants of Skeletal Muscle Catabolism After Severe Burn. Ann. Surg. 2000, 232, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum Creatinine as a Marker o.o.of Muscle Mass in Chronic Kidney Disease: Results of a Cross-Sectional Study and Review of Literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association Between Vitamin D Status and Physical Performance: The InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 440–446. [Google Scholar] [CrossRef]
- Ward, K.A.; Das, G.; Berry, J.L.; Roberts, S.A.; Rawer, R.; Adams, J.E.; Mughal, Z. Vitamin D Status and Muscle Function in Post-Menarchal Adolescent Girls. J. Clin. Endocrinol. Metab. 2009, 94, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Lorente-Cebrián, S.; Costa, A.G.V.; Navas-Carretero, S.; Zabala, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of Omega-3 Fatty Acids in Obesity, Metabolic Syndrome, and Cardiovascular Diseases: A Review of the Evidence. J. Physiol. Biochem. 2013, 69, 633–651. [Google Scholar] [CrossRef]
- Merritt, E.K.; Stec, M.J.; Thalacker-Mercer, A.; Windham, S.T.; Cross, J.M.; Shelley, D.P.; Craig Tuggle, S.; Kosek, D.J.; Kim, J.; Bamman, M.M. Heightened Muscle Inflammation Susceptibility May Impair Regenerative Capacity in Aging Humans. J. Appl. Physiol. 2013, 115, 937–948. [Google Scholar] [CrossRef]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The Role of Omega-3 in the Prevention and Treatment of Sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Sheffield-Moore, M.; Dillon, E.L.; Randolph, K.M.; Casperson, S.L.; White, G.R.; Jennings, K.; Rathmacher, J.; Schuette, S.; Janghorbani, M.; Urban, R.J.; et al. Isotopic Decay of Urinary or Plasma 3-Methylhistidine as a Potential Biomarker of Pathologic Skeletal Muscle Loss. J. Cachexia Sarcopenia Muscle 2014, 5, 19–25. [Google Scholar] [CrossRef]
- Kochlik, B.; Stuetz, W.; Pérès, K.; Féart, C.; Tegner, J.; Rodriguez-Mañas, L.; Grune, T.; Weber, D. Associations of Plasma 3-Methylhistidine with Frailty Status in French Cohorts of the FRAILOMIC Initiative. J. Clin. Med. 2019, 8, 1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L.; Committee, A.M. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.L.; Oh, E.S.; Lee, R.W.; Fiinuca.ane, T.E. Serum Albumin and Prealbumin in Calorically Restricted, Nondiseased Individuals: A Systematic Review. Am. J. Med. 2015, 128, e1–e1023. [Google Scholar] [CrossRef] [Green Version]
- Shetty, P.S.; Watrasiewicz, K.E.; Jung, R.T.; James, W.P. Rapid-Turnover Transport Proteins: An Index of Subclinical Protein-Energy Malnutrition. Lancet 1979, 2, 230–232. [Google Scholar] [CrossRef]
- Fletcher, J.P.; Little, J.M.; Guest, P.K. A Comparison of Serum Transferrin and Serum Prealbumin as Nutritional Parameters. J. Parenter Enter. Nutr. 1987, 11, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Roza, A.M.; Tuitt, D.; Shizgal, H.M. Transferrin—A Poor Measure of Nutritional Status. J. Parenter Enter. Nutr. 1984, 8, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Bellovino, D.; Apreda, M.; Gragnoli, S.; Massimi, M.; Gaetani, S. Vitamin A Transport: In Vitro Models for the Study of RBP Secretion. Mol. Aspects Med. 2003, 24, 411–420. [Google Scholar] [CrossRef]
- Smith, J.E.; DeMoor, L.M.; Handler, C.E.; Green, E.L.; Ritter, S.J. The Complex between Retinol and Retinol-Binding Protein Is Formed in the Rough Microsomes of Liver Following Repletion of Vitamin A-Depleted Rats. Biochim. Biophys. Acta 1998, 1380, 10–20. [Google Scholar] [CrossRef]
- Kergoat, M.J.; Leclerc, B.S.; PetitClerc, C.; Imbach, A. Discriminant Biochemical Markers for Evaluating the Nutritional Status of Elderly Patients in Long-Term Care. Am. J. Clin. Nutr. 1987, 46, 849–861. [Google Scholar] [CrossRef]
- Isley, W.L.; Underwood, L.E.; Clemmons, D.R. Dietary Components That Regulate Serum Somatomedin-C Concentrations in Humans. J. Clin. Investig. 1983, 71, 175–182. [Google Scholar] [CrossRef]
Biomarker | Type of Molecule/Biological Domain | Association with Nutrition | Association with Sarcopenia | Other Associated Disease | References |
---|---|---|---|---|---|
3-methylhistidine | Amino acid | Dietary intake | Increased levels associated with muscle protein degradation | - | [25,26] |
Albumin | Protein | Associated with malnutrition | Low serum levels lead to a decrease in muscle mass and function | Lower levels associated with nephrotic syndrome, inflammatory cytokines, liver failure, enteropathies, and gastrointestinal disorders | [27,28,29,30] |
Carnitine | Amino acid | Mainly dietary intake | Decreased levels associated with sarcopenia and SMI | - | [31,32] |
Carotenoids | Hydrocarbons | Dietary intake | Increased levels associated with lower risk of disability in walking | Increased levels associated with higher risk of increased IL-6 level | [33,34] |
Creatinine | Breakdown product of creatine | In a protein-balanced diet, the concentration of creatinine in urine is reduced | High concentration in urine associated with muscle degradation | - | [35] |
C-reactive protein (CRP) | Protein | Affected by obesity and quality of diet | Increased levels associated with muscle loss, lower muscle strength, and sarcopenia | Systemic inflammation | [36,37,38] |
Insulin-like growth factor (IGF-1) | Hormone | Decreased during fasting, affected by food intake | Related to skeletal mass atrophy, possibly a factor of sarcopenia development | Renal dysfunction, liver disease, severe trauma | [39,40,41] |
Leptin | Protein hormone | Associated with overnutrition | When present, higher production of pro-inflammatory cytokins linked to sarcopenia and sarcopenic obesity | [42,43,44] | |
n-3 fatty acids | Fatty acids | Dietary intake | Decreased serum levels associated with lower risk of sarcopenia | Reduced inflammation | [45] |
Pre-albumin | Protein | Less than 10 mg/dL associated with malnutrition; affected by protein restrictive diets | Decreased levels associated with reduced muscle mass and LBM | Higher in protein deficient state; higher in cytokine-induced inflammatory disorders | [46,47] |
Retinol binding protein (RBP) | Protein | Reduced when underweight | Related to malnutrition | [48] | |
Selenium | Trace element | Dietary intake | Decreased levels associated with low muscle mass | - | [49] |
Transferrin | Protein | Is an index of nutritional status | Related to malnutrition | [48] | |
Uric acid | Purine derivative | Affected by food intake | Increased levels associated with increased handgrip strength and greater muscle function | - | [50,51,52,53] |
Urinary levels of Titin-N fragment | Protein fragment | Negative correlation with nutrional status indicators | Patients with sarcopenia have higher concentration in their urine | - | [54] |
Vitamins C and E | Vitamins | Dietary intake | Undermines muscle adaptations to strength training | - | [55] |
Vitamin D | Vitamin | Dietary intake | Affects number and diameter of type II muscle cells | Total mortality, hip fractures, and early death | [56,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, S.K.; Voulgaridou, G.; Kondyli, F.S.; Drakaki, M.; Sianidou, K.; Andrianopoulou, R.; Rodopaios, N.; Pritsa, A. Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases 2022, 10, 42. https://doi.org/10.3390/diseases10030042
Papadopoulou SK, Voulgaridou G, Kondyli FS, Drakaki M, Sianidou K, Andrianopoulou R, Rodopaios N, Pritsa A. Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases. 2022; 10(3):42. https://doi.org/10.3390/diseases10030042
Chicago/Turabian StylePapadopoulou, Sousana K., Gavriela Voulgaridou, Foivi S. Kondyli, Mariella Drakaki, Kyriaki Sianidou, Rozalia Andrianopoulou, Nikolaos Rodopaios, and Agathi Pritsa. 2022. "Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression" Diseases 10, no. 3: 42. https://doi.org/10.3390/diseases10030042
APA StylePapadopoulou, S. K., Voulgaridou, G., Kondyli, F. S., Drakaki, M., Sianidou, K., Andrianopoulou, R., Rodopaios, N., & Pritsa, A. (2022). Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases, 10(3), 42. https://doi.org/10.3390/diseases10030042