Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Sociodemographic Factors and Geriatric Evaluation
2.3. Nickel Determination
2.4. Measurement of Hematological and Biochemical Markers
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics and Clinical Variables
3.2. Nickel Concentration and Its Association with Sociodemographic and Clinical Variables
3.3. Nickel Concentration and Its Association with Testosterone and Estradiol
3.4. Plasma Nickel Concentration and Geriatric Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Trace Elements in Human Nutrition and Health. Nutr. Health 1996, 11, 133–134. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, L.; Marrocos, P.; Montalván Olivares, D.M.; Velasco, F.G.; Luzardo, F.H.M.; Mota de Jesus, R. Bioaccumulation of nickel in tomato plants: Risks to human health and agro-environmental impacts. Environ. Monit. Assess. 2018, 190, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Dohnalova, L.; Bucek, P.; Vobornik, P.; Dohnal, V. Determination of nickel in hydrogenated fats and selected chocolate bars in Czech Republic. Food Chem. 2017, 217, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P. Human exposure to nickel. IARC Sci. Publ. 1984, 469–485. [Google Scholar]
- Marín-Martínez, R.; Barber, X.; Cabrera-Vique, C.; Carbonell-Barrachina, Á.A.; Vilanova, E.; García-Hernández, V.M.; Roche, E.; Garcia-Garcia, E. Aluminium, nickel, cadmium and lead in candy products and assessment of daily intake by children in Spain. Food Addit. Contam. Part B Surveill. 2016, 9, 66–71. [Google Scholar] [CrossRef]
- Guarneri, F.; Costa, C.; Cannavò, S.P.; Catania, S.; Bua, G.D.; Fenga, C.; Dugo, G. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermat. 2017, 76, 40–48. [Google Scholar] [CrossRef]
- Sorahan, T.; Waterhouse, J.A.H. Mortality study of nickel-cadmium battery workers by the method of regression models in life tables. Occup. Environ. Med. 1983, 40, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Bencko, V. Nickel: A review of its occupational and environmental toxicology. J. Hyg. Epidemiol. Microbiol. Immunol. 1983, 27, 237–247. [Google Scholar]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Shi, X.; Costa, M.; Huang, C. Carcinogenic effect of nickel compounds. Mol. Cell. Biochem. 2005 2791 2005, 279, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J. Serum and Hair Nickel Levels and Breast Cancer: Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2017, 179, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Snow, E.T. Metal carcinogenesis: Mechanistic implications. Pharmacol. Ther. 1992, 53, 31–65. [Google Scholar] [CrossRef]
- Fourcade, R.O.; Benedict, Á.; Black, L.K.; Stokes, M.E.; Alcaraz, A.; Castro, R. Treatment costs of prostate cancer in the first year after diagnosis: A short-term cost of illness study for France, Germany, Italy, Spain and the UK. BJU Int. 2010, 105, 49–56. [Google Scholar] [CrossRef]
- Millos, J.; Costas-Rodríguez, M.; Lavilla, I.; Bendicho, C. Multielemental determination in breast cancerous and non-cancerous biopsies by inductively coupled plasma-mass spectrometry following small volume microwave-assisted digestion. Anal. Chim. Acta 2008, 622, 77–84. [Google Scholar] [CrossRef]
- Yaman, M.; Kaya, G.; Yekeler, H. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J. Gastroenterol. 2007, 13, 612. [Google Scholar] [CrossRef]
- Çelen, İ.; Müezzinoğlu, T.; Ataman, O.Y.; Bakırdere, S.; Korkmaz, M.; Neşe, N.; Şenol, F.; Lekili, M. Selenium, nickel, and calcium levels in cancerous and non-cancerous prostate tissue samples and their relation with some parameters. Environ. Sci. Pollut. Res. 2015 2217 2015, 22, 13070–13076. [Google Scholar] [CrossRef]
- Guntupalli, J.N.R.; Padala, S.; Gummuluri, A.V.R.M.; Muktineni, R.K.; Byreddy, S.R.; Sreerama, L.; Kedarisetti, P.C.; Angalakuduru, D.P.; Satti, B.R.; Venkatathri, V.; et al. Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur. J. Cancer Prev. 2007, 16, 108–115. [Google Scholar] [CrossRef]
- Yaman, M.; Atici, D.; Bakirdere, S.; Akdeniz, I. Comparison of trace metal concentrations in malign and benign human prostate. J. Med. Chem. 2005, 48, 630–634. [Google Scholar] [CrossRef]
- Ozmen, H.; Erulas, F.A.; Karatas, F.; Cukurovali, A.; Yalcin, O. Comparison of the concentration of trace metals (Ni, Zn, Co, Cu and Se), Fe, vitamins A, C and E, and lipid peroxidation in patients with prostate cancer. Clin. Chem. Lab. Med. 2006, 44, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Kasprzak, K.S.; Kenney, S.; Heine, U.I. Inhibition of intercellular communication by nickel(II): Antagonistic effect of magnesium. Carcinogenesis 1987, 8, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Landolph, J.R. Induction of Anchorage Independence in Human Diploid Foreskin Fibroblasts by Carcinogenic Metal Salts. Cancer Res. 1987, 47, 3815–3823. [Google Scholar]
- DiPaoIo, J.A.; Casto, B.C. Quantitative Studies of in Vitro Morphological Transformation of Syrian Hamster Cells by Inorganic Metal Salts. Cancer Res. 1979, 39, 1008–1013. [Google Scholar]
- Patierno, S.R.; Dirscherl, L.A.; Xu, J. Transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds. Mutat. Res. Toxicol. 1993, 300, 179–193. [Google Scholar] [CrossRef]
- Gritton, J.; Stewart, J.; Jeavons, C.; Mehmet, N.; La Placa, V. Movies in the Classroom: Lessons for Curriculum Design. Compass J. Learn. Teach. 2016, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Conway, K. Comparison of the Localization of Chromosome Damage Induced by Calcium Chromate and Nickel Compounds. Cancer Res. 1987, 47, 2142–2147. [Google Scholar]
- Nackerdien, Z.; Kasprzak, K.S.; Rao, G.; Halliwell, B.; Dizdaroglu, M. Nickel (II)-and cobalt (II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res. 1991, 51, 5837–5842. [Google Scholar]
- Hartwig, A.; Krüger, I.; Beyersmann, D. Mechanisms in nickel genotoxicity: The significance of interactions with DNA repair. Toxicol. Lett. 1994, 72, 353–358. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Klein, C.B.; Kargacin, B.; Salnikow, K.; Kitahara, J.; Dowjat, K.; Zhitkovich, A.; Christie, N.T.; Costa, M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol. Cell. Biol. 1995, 15, 2547–2557. [Google Scholar] [CrossRef] [Green Version]
- Sorahan, T.M.; Waterhouse, J.A.H. A Further Analysis of Mortality From Cancer of the Prostate Among Nickel-Cadmium Battery Workers By the Method of Regression-Models in Life-Tables. Br. J. Cancer 1983, 48, 125–126. [Google Scholar]
- Costa, M. Molecular Mechanisms of Nickel Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1991, 31, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Vella, V.; Malaguarnera, R.; Lappano, R.; Maggiolini, M.; Belfiore, A. Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Mol. Cell. Endocrinol. 2017, 457, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Human epidemiologic studies of exposure to endocrine-disrupting chemicals and altered hormone levels. Endocr.-Disrupting Chem. Food 2009, 36–57. [Google Scholar]
- Meeker, J.D. Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 2010, 66, 236–241. [Google Scholar] [CrossRef]
- Hu, R.; Lu, C.; Mostaghel, E.A.; Yegnasubramanian, S.; Gurel, M.; Tannahill, C.; Edwards, J.; Isaacs, W.B.; Nelson, P.S.; Bluemn, E.; et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012, 72, 3457–3462. [Google Scholar] [CrossRef] [Green Version]
- Aquino, N.B.; Sevigny, M.B.; Sabangan, J.; Louie, M.C. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: Metalloestrogens or not? J. Environ. Sci. Health-Part C Environ. Carcinog. Ecotoxicol. Rev. 2012, 30, 189–224. [Google Scholar] [CrossRef] [Green Version]
- Predki, P.F.; Sarkar, B. Effect of replacement of “zinc finger” zinc on estrogen receptor DNA interactions. J. Biol. Chem. 1992, 267, 5842–5846. [Google Scholar] [CrossRef]
- Deegan, B.J.; Bona, A.M.; Bhat, V.; Mikles, D.C.; McDonald, C.B.; Seldeen, K.L.; Farooq, A. Structural and thermodynamic consequences of the replacement of zinc with environmental metals on estrogen receptor α–DNA interactions. J. Mol. Recognit. 2011, 24, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Wurth, R.; Kioumourtzoglou, M.-A.; Tucker, K.L.; Griffith, J.; Manjourides, J.; Suh, H. Fine Particle Sources and Cognitive Function in An Older Puerto Rican Cohort in Greater Boston. Environ. Epidemiol. 2018, 2, e022. [Google Scholar] [CrossRef]
- Martínez-Martínez, M.I.; Muñoz-Fambuena, I.; Cauli, O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Schaumlöffel, D. Nickel species: Analysis and toxic effects. J. Trace Elem. Med. Biol. 2012, 26, 1–6. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Bilbao, A.; Forjaz, M.J.; Ayala, A.; Orive, M.; Garcia-Gutierrez, S.; Las Hayas, C.; Quintana, J.M.; Lópeza, J.M.Q.; Gutiérreza, S.G.; et al. Psychometric characteristics of the Spanish version of the Barthel Index. Aging Clin. Exp. Res. 2017 305 2017, 30, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Vinyoles Bargalló, E.; Vila Domènech, J.; Argimon Pallàs, J.M.; Espinàs Boquet, J.; Abos Pueyo, T.; Limón Ramírez, E. Concordancia entre el Mini-Examen Cognoscitivo y el Mini-Mental State Examination en el cribado del déficit cognitivo. Atención Primaria 2002, 30, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Javier Rubio Castañeda, F.; Tomás Aznar Carmen Muro Baquero, C.; Francisco Javier Rubio Castañeda, C. Medición De La Actividad Física En Personas Mayores De 65 Años Mediante El Ipaq-E: Validez De Contenido, Fiabilidad Y Factores Asociados. Rev. Esp. Salud Pública 2017, 91, 1–12. [Google Scholar]
- Gómez-Benito, J.; Ruiz, C.; Guilera, G. A Spanish version of the athens insomnia scale. Qual. Life Res. 2011, 20, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Ottenbacher, K.J.; Branch, L.G.; Ray, L.; Gonzales, V.A.; Peek, M.K.; Hinman, M.R. The reliability of upper- and lower-extremity strength testing in a community survey of older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1423–1427. [Google Scholar] [CrossRef]
- Sonmez, G.; Tombul, S.T.; Demirtas, T.; Demirtas, A. Clinical factors for predicting malignancy in patients with PSA. Asia. Pac. J. Clin. Oncol. 2021, 17, e94–e99. [Google Scholar] [CrossRef]
- Donnelly, B.J.; Saliken, J.C.; Ernst, D.S.; Ali-Ridha, N.; Brasher, P.M.A.; Robinson, J.W.; Rewcastle, J.C. Prospective trial of cryosurgical ablation of the prostate: Five-year results. Urology 2002, 60, 645–649. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Dickerman, B.; Mucci, L. Metabolic Factors and Prostate Cancer Risk. Clin. Chem. 2019, 65, 42–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.H. Nutrition and prostate cancer: An overview. Expert Rev. Anticancer Ther. 2014, 14, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Rebbeck, T.R. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography. Semin. Radiat. Oncol. 2017, 27, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høgetveit, A.C.; Barton, R.T.; Kostøl, C.O. Plasma nickel as a primary index of exposure in nickel refining. Ann. Occup. Hyg. 1978, 21, 113–120. [Google Scholar]
- Sunderman, F.W.; Aitio, A.; Morgan, L.G.; Norseth, T. Biological monitoring of nickel. Toxicol. Ind. Health 1986, 2, 17–78. [Google Scholar] [CrossRef]
- Angerer, J.; Lehnert, G. Occupational chronic exposure to metals. II. Nickel exposure of stainless steel welders--biological monitoring. Int. Arch. Occup. Environ. Health 1990, 62, 7–10. [Google Scholar] [CrossRef]
- Olivares Arias, V.; Valverde Som, L.; Quiros Rodríguez, V.; García Romero, R.; Muñoz, N.; Navarro Alarcón, M.; Cabrera Vique, C. Níquel en alimentos y factores influyentes en sus niveles, ingesta, biodisponibilidad y toxicidad: Una revisión. CYTA-J. Food 2015, 13, 87–101. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Air Quality Guidelines for Europe, 2nd ed.; The World Health Organization: Geneva, Switzerland, 2000; Available online: https://apps.who.int/iris/handle/10665/107335 (accessed on 16 May 2022).
- World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace: Guidelines, 1996; The World Health Organization: Geneva, Switzerland, 1996; Available online: https://apps.who.int/iris/handle/10665/41856 (accessed on 16 May 2022).
- Ständige Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAK-und BAT-Werte-Liste 2021 Ständige Senatskommission zur Prüfung Gesundheitsschädlicher Arbeitsstoffe Mitteilung 57; Forschungsgemeinschaft, D., Ed.; Deutsche Forschungsgemeinschaft: Bonn, Germany, 2021. [Google Scholar]
- Templeton, D.M.; Sunderman, F.W.; Herber, R.F.M. Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: Evaluation according to the TRACY protocol. Sci. Total Environ. 1994, 148, 243–251. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Shah, M.H. Comparative Study of Trace Elements in Blood, Scalp Hair and Nails of Prostate Cancer Patients in Relation to Healthy Donors. Biol. Trace Elem. Res. 2014, 162, 46–57. [Google Scholar] [CrossRef]
- Fischer, R.S.B.; Unrine, J.M.; Vangala, C.; Sanderson, W.T.; Mandayam, S.; Murray, K.O. Evidence of nickel and other trace elements and their relationship to clinical findings in acute Mesoamerican Nephropathy: A case-control analysis. PLoS ONE 2020, 15, e0240988. [Google Scholar]
- Drazniowsky, M.; Parkinson, I.S.; Ward, M.K.; Channon, S.M.; Kerr, D.N. Raised serum nickel concentrations in chronic renal failure. Proc. Eur. Dial. Transplant Assoc. Eur. Ren. Assoc. 1985, 21, 241–246. [Google Scholar] [PubMed]
- Wills, M.R.; Savory, J. Water content of aluminum, dialysis dementia, and osteomalacia. Environ. Health Perspect. 1985, 63, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Wu, C.L.; Kor, C.T.; Lian, I.B.; Chang, C.H.; Chang, T.H.; Chang, C.C.; Chiu, P.F. Prospective associations between environmental heavy metal exposure and renal outcomes in adults with chronic kidney disease. Nephrology 2018, 23, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [Green Version]
- Dieter, M.P.; Jameson, C.W.; Tucker, A.N.; Luster, M.I.; French, J.E.; Hong, H.L.; Boorman, G.A. Evaluation of tissue disposition, myelopoietic, and immunologic responses in mice after long-term exposure to nickel sulfate in the drinking water. J. Toxicol. Environ. Health 1988, 24, 357–372. [Google Scholar] [CrossRef]
- Lau, W.L.; Vaziri, N.D. Urea, a true uremic toxin: The empire strikes back. Clin. Sci. 2017, 131, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, M.; Wittsiepe, J.; Seiwert, M.; Hünken, A.; Becker, K.; Conrad, A.; Schulz, C.; Kolossa-Gehring, M. Levels and predictors of urinary nickel concentrations of children in Germany: Results from the German Environmental Survey on children (GerES IV). Int. J. Hyg. Environ. Health 2013, 216, 163–169. [Google Scholar] [CrossRef]
- Osaka, T.; Hamaguchi, M.; Hashimoto, Y.; Ushigome, E.; Tanaka, M.; Yamazaki, M.; Fukui, M. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 52–58. [Google Scholar] [CrossRef]
- Yamamoto, S.; Matsuzawa, R.; Hoshi, K.; Suzuki, Y.; Harada, M.; Watanabe, T.; Isobe, Y.; Imamura, K.; Osada, S.; Yoshida, A.; et al. Modified Creatinine Index and Clinical Outcomes of Hemodialysis Patients: An Indicator of Sarcopenia? J. Ren. Nutr. 2021, 31, 370–379. [Google Scholar] [CrossRef]
- Tang, T.; Zhuo, Y.; Xie, L.; Wang, H.; Yang, M. Sarcopenia index based on serum creatinine and cystatin C is associated with 3-year mortality in hospitalized older patients. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdel-Marchasson, I.; Laksir, H.; Puget, E. Interpreting routine biochemistry in those aged over 65 years: A time for change. Maturitas 2010, 66, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, L.; Lind, L.; Larsson, A. Reference Values for 27 Clinical Chemistry Tests in 70-Year-Old Males and Females. Gerontology 2010, 56, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Aucella, F.; Guida, C.C.; Lauriola, V.; Vergura, M. How to assess renal function in the geriatric population. J. Nephrol. 2010, 23 (Suppl. S1), S46–S54. [Google Scholar]
- Ferguson, W.B. Competitive Mg2+ block of a large-conductance, Ca(2+)-activated K+ channel in rat skeletal muscle. Ca2+, Sr2+, and Ni2+ also block. J. Gen. Physiol. 1991, 98, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Magleby, K.L.; Weinstock, M.M. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction. J. Physiol. 1980, 299, 203–218. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Bourinet, E.; Snutch, T.P. Nickel block of a family of neuronal calcium channels: Subtype- and subunit-dependent action at multiple sites. J. Membr. Biol. 1996, 151, 77–90. [Google Scholar] [CrossRef]
- Perez-Reyes, E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 2003, 83, 117–161. [Google Scholar] [CrossRef] [Green Version]
- To, K.H.T.; Gui, P.; Li, M.; Zawieja, S.D.; Castorena-Gonzalez, J.A.; Davis, M.J. T-type, but not L-type, voltage-gated calcium channels are dispensable for lymphatic pacemaking and spontaneous contractions. Sci. Rep. 2020, 10, 70. [Google Scholar] [CrossRef]
- Nasu, T.; Yamaguchi, K.; Shibata, H. Blockade by nickel ions of phasic contraction to K+ and high affinity calcium of ileal longitudinal muscle of guinea-pig. Comp. Biochem. Physiol. C 1993, 106, 377–381. [Google Scholar] [CrossRef]
Variable | PCa | Control | Total |
---|---|---|---|
Age: mean | 72.24 | 74.63 | |
Age: standard error mean | 1.380 | 1.390 | |
Number of smokers | 4 | 3 | 7 |
Educational level: | |||
No education | 9 | 4 | 13 |
Primary | 18 | 26 | 44 |
Secondary | 12 | 10 | 22 |
University | 7 | 6 | 13 |
Employment status: | |||
Active | 3 | 2 | 5 |
Retired | 38 | 43 | 81 |
Others | 5 | 1 | 6 |
Marital status: | |||
Married | 40 | 6 | 46 |
Widow | 2 | 27 | 29 |
Divorced | 3 | 5 | 8 |
Others | 1 | 8 | 9 |
Totals | 46 | 46 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alegre-Martínez, A.; Martínez-Martínez, M.I.; Rubio-Briones, J.; Cauli, O. Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer. Diseases 2022, 10, 39. https://doi.org/10.3390/diseases10030039
Alegre-Martínez A, Martínez-Martínez MI, Rubio-Briones J, Cauli O. Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer. Diseases. 2022; 10(3):39. https://doi.org/10.3390/diseases10030039
Chicago/Turabian StyleAlegre-Martínez, Antoni, María Isabel Martínez-Martínez, José Rubio-Briones, and Omar Cauli. 2022. "Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer" Diseases 10, no. 3: 39. https://doi.org/10.3390/diseases10030039
APA StyleAlegre-Martínez, A., Martínez-Martínez, M. I., Rubio-Briones, J., & Cauli, O. (2022). Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer. Diseases, 10(3), 39. https://doi.org/10.3390/diseases10030039