A Frequency and Radiation Pattern Combo-Reconfigurable Novel Antenna for 5G Applications and Beyond
Abstract
:1. Introduction
2. Proposed Antenna Design
3. Analytical Results and Discussion
3.1. Frequency/VSWR/Bandwidth/Gain/Efficiency Reconfiguration Analysis
3.2. Radiation Pattern Reconfiguration Analysis
- (a)
- This structure was a novel design for mmWaves, never claimed before.
- (b)
- Frequency and pattern were independently controlled in a single antenna, showing structural novelty.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haris, R.M.; Al-Maadeed, S. Integrating Blockchain Technology in 5G enabled IoT: A Review. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 367–371. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Ge, L.; Wang, J.; Ai, B. A Compact Hepta-Band Mode-Composite Antenna for Sub (6, 28, and 38) GHz Applications. IEEE Trans. Antennas Propag. 2020, 68, 2593–2602. [Google Scholar] [CrossRef]
- Shereen, M.K.; Khattak, M.I.; Witjaksono, G. A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications. J. Comput. Electron. 2019, 18, 1065–1102. [Google Scholar] [CrossRef]
- Khattak, M.I.; Sohail, A.; Khan, U.; Ullah, Z.; Witjaksono, G. Elliptical Slot Circular Patch Antenna Array with Dual Band Behaviour for Future 5G Mobile Communication Networks. Prog. Electromagn. Res. C 2019, 89, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ansari, A.Q.; Kanaujia, B.K.; Kishor, J.; Tewari, N. Design of triple-band MIMO antenna with one band-notched characteristic. Prog. Electromagn. Res. C 2018, 86, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Alreshaid, A.T.; Hammi, O.; Sharawi, M.S.; Sarabandi, K. A compact millimeter-wave slot antenna array for 5G standards. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kuta, Indonesia, 30 June–3 July 2015; pp. 84–85. [Google Scholar] [CrossRef]
- Ali, M.M.M.; Sebak, A.-R. Directive antennas for future 5G mobile wireless communications. In Proceedings of the General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26 August 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ashraf, N.; Haraz, O.M.; Ali, M.M.M.; Ashraf, M.A.; Alshebili, S.A.S. Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication. Aeuinternational J. Electron. Commun. 2016, 70, 257–264. [Google Scholar] [CrossRef]
- Ali, M.M.M.; Sebak, A.-R. Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 10–13 July 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Yan, K.; Yang, P.; Yang, F.; Zeng, L.; Huang, S. Eight-antenna array in the 5G smartphone for the dual-band MIMO system. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 41–42. [Google Scholar] [CrossRef]
- Hasan, M.N.; Seo, M. Compact omnidirectional 28GHz 2 × 2 MIMO antenna array for 5G communications. In Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), Busan, Korea, 23–26 October 2018; pp. 1–2. [Google Scholar]
- Hong, W.; Baek, K.-H.; Ko, S. Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration. IEEE Trans. Antennas Propag. 2017, 65, 6250–6261. [Google Scholar] [CrossRef]
- Christodoulou, C.G.; Tawk, Y.; Lane, S.A.; Erwin, S.R. Reconfigurable Antennas for Wireless and Space Applications. Proc. IEEE 2012, 100, 2250–2261. [Google Scholar] [CrossRef]
- Freeman, J.L.; Lamberty, B.J.; Andrews, G.S. Optoelectronically reconfigurable monopole antenna. Electron. Lett. 1992, 28, 1502–1503. [Google Scholar] [CrossRef]
- Panagamuwa, C.J.; Chauraya, A.; Vardaxoglou, J.C. Frequency and beam reconfigurable antenna using photoconducting switches. IEEE Trans. Antennas Propag. 2006, 54, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Roscoe, D.J.; Shafai, L.; Ittipiboon, A.; Cuhaci, M.; Douville, R. Tunable dipole antennas. In Proceedings of the IEEE/URSI International Symposium on Antennas and Propagation, Ann Arbor, MI, USA, 28 June–2 July 1993; pp. 672–675. [Google Scholar] [CrossRef]
- Weedon, W.; Payne, W.; Rebeiz, G.; Herd, J.; Champion, M. MEMS-switched reconfigurable multi-band antenna: Design and modeling. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), Orlando, FL, USA, 11–16 July 1999; Volume 1, pp. 203–231. [Google Scholar]
- Brown, E.R. On the gain of a reconfigurable-aperture antenna. IEEE Trans. Antennas Propag. 2001, 49, 1357–1362. [Google Scholar] [CrossRef]
- Ali, M.A.; Wahid, P. A reconfigurable Yagi array for wireless applications. In Proceedings of the IEEE/URSI International Symposium on Antennas and Propagation, San Antonio, TX, USA, 16–21 June 2002; pp. 466–468. [Google Scholar] [CrossRef]
- Vinoy, K.; Varadan, V. Design of reconfigurable fractal antennas and RF-MEMS for space-based systems. Smart Mater. Struct. 2001, 10, 1211–1223. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Zheng, G.; Chryssomallis, M.T.; Lyke, J.C.; Ponchak, G.E.; Papapolymerou, J.; Christodoulou, C.G. Design, fabrication, and measurements of an RFMEMS-based self-similar reconfigurable antenna. IEEE Trans. Antennas Propag. 2006, 54, 422–432. [Google Scholar] [CrossRef]
- Clarricoats, P.J.B.; Zhou, H. The design and performance of a reconfigurable mesh reflector antenna. IEE Digit. Libr. 1991, 138, 485–492. [Google Scholar]
- Clarricoats, P.J.B.; Zhou, H.; Monk, A. Electronically controlled reconfigurable reflector antenna. In Proceedings of the Antennas and Propagation Society Symposium 1991 Digest, London, ON, Canada, 24–28 June 1991; pp. 179–181. [Google Scholar] [CrossRef]
- Washington, G.; Yoon, H.S.; Angelino, M.; Theunissen, W.H. Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Trans. Antennas Propag. 2002, 50, 628–637. [Google Scholar] [CrossRef]
- Nikolaou, S.; Bairavasubramanian, R.; Lugo, C., Jr.; Carrasquillo, I.; Thompson, D.C.; Ponchak, G.E.; Papapolymerou, J.; Tentzeris, M.M. Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Trans. Antennas Propag. 2006, 54, 439–448. [Google Scholar] [CrossRef]
- Huff, G.H.; Feng, J.; Zhang, S.; Bernhard, J.T. A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 57–59. [Google Scholar] [CrossRef]
- Yang, X.-S.; Wang, B.Z.; Wu, W.; Xiao, S. Yagi patch antenna with dual-band and pattern reconfigurable characteristics. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 168–171. [Google Scholar] [CrossRef]
- Ali, M.; Sayem, A.T.M.; Kunda, V.K. A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links. IEEE Trans. Veh. Technol. 2007, 56, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Qamar, F.; Siddiqui, M.H.S.; Dimyati, K.; Noordin, K.A.B.; Majed, M.B. Channel characterization of 28 and 38 GHz MM-wave frequency band spectrum for the future 5G network. In Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Putrajaya, Malaysia, 13–14 December 2017; pp. 291–296. [Google Scholar] [CrossRef]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yasir, I.A.A.; Hasanain, A.H.A.; Baha, A.S.; Parchin, N.O.; Ahmed, M.A.; Abdulkareem, S.A.; Raed, A.A. New Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Communications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Robert, E.C. Foundation for Microwave Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1966. [Google Scholar]
- George, H.; Joseph, C. Practical Antenna Handbook 5/e; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Chitra, R.J.; Nagarajan, V. Frequency reconfigurable antenna using PIN diodes. In Proceedings of the 2014 Twentieth National Conference on Communications (NCC), Kanpur, India, 28 February–2 March 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Yamagajo, T.; Koga, Y. Frequency reconfigurable antenna with MEMS switches for mobile terminals. In Proceedings of the 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Torino, Italy, 12–16 September 2011; pp. 1213–1216. [Google Scholar] [CrossRef]
- Tian, H.; Jiang, L.J.; Itoh, T. A Compact Single-Element Pattern Reconfigurable Antenna with Wide-Angle Scanning Tuned by a Single Varactor. Prog. Electromagn. Res. C 2019, 92, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Lee, S.; Kim, K. A pattern-reconfigurable antenna using PIN diodes. Microw. Opt. Technol. Lett. 2011, 53, 1883–1887. [Google Scholar] [CrossRef]
- Li, W.; Ren, Z.; Shi, X.; Hei, Y. A frequency and pattern reconfigurable microstrip antenna using PIN diodes. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1449–1450. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, X.J.; Hussain, N.; Awan, W.A. Flexible Frequency and Radiation Pattern Reconfigurable Antenna for Multi-Band Applications. In Proceedings of the 2020 4th Australian Microwave Symposium (AMS), Sydney, Australia, 13–14 February 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Li, P.K.; Shao, Z.H.; Wang, Q.; Cheng, Y.J. Frequency- and pattern-reconfigurable antenna for multistandard wireless applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 333–336. [Google Scholar] [CrossRef]
- Majid, H.A.; Rahim, M.K.A.; Hamid, M.R.; Ismail, M.F. Frequency and pattern reconfigurable slot antenna. IEEE Trans. Antennas Propag. 2014, 62, 5339–5343. [Google Scholar] [CrossRef]
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
3 | 0.3 | ||
12.5 | 0.4 | ||
2 | 0.2 | ||
1.8 | 1.2 | ||
0.2 | 0.8 | ||
0.8 | 5.5 | ||
0.3 | 5.2 | ||
0.2 | 0.3 | ||
1.5 | 4 | ||
0.035 | 3.8 | ||
4 | 2 | ||
3.8 | 1.9 | ||
15 | 1 |
State | SD1 | SD2 | All Other Switches | Direction |
---|---|---|---|---|
State 1 | ON | ON | OFF | Pattern is directed in the middle |
State 2 | ON | OFF | OFF | Uni-directional |
State 3 | OFF | ON | OFF | Uni-directional |
Mode | SD1 | SD2 | SD3 | SD4 | SD5 | SD6 | SD7 | SD8 | SD9 | SD10 | SD11 | SD12 | SD13 | SD14 | SD15 | SD16 | SD17 | SD18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ON | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
2 | ON | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
3 | ON | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
4 | ON | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
5 | ON | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
6 | ON | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
7 | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
8 | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
9 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF |
10 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF |
11 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF | OFF |
12 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF | OFF |
13 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF | OFF |
14 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF | OFF |
15 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON | OFF |
16 | OFF | ON | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | ON |
State | BW (%) | BW (GHz) | Gain (dBi) | Efficiency (%) | VSWR |
---|---|---|---|---|---|
State 1 | 40.85 | 26.40–39.722 | 3.8 | 53.2 | - |
State 2 | 12.707 | 26.240–29.748 | 8.3 | 70.20 | 1.4 |
State 3 | 7.65 | 36.812–39.722 | 7.1 | 66.39 | 1.51 |
Reference | Reconfiguration | Switches/Types | Dimension(mm2) | Generation | Gain/Max (dBi) | Distribution of Hybrid Reconfiguration |
---|---|---|---|---|---|---|
[35] | Frequency | 3 PIN diodes | 28 × 38 | 3G | N/A | - |
[36] | Frequency | 4 MEMS | 46 × 25 | 4G | 2.2 | - |
[37] | Pattern | 5 varactors | 38 × 42 | 4G | 2.4 | - |
[38] | Pattern | 4 PIN diodes | 58 × 32 | 4G | 3.14 | - |
[39] | Hybrid (frequency and pattern) | 14 PIN diodes | 150 × 160 | 4G | 5.8/4.4/3.2 | Combined |
[40] | Hybrid (frequency and pattern) | N/A | 86 × 48.3 | 4G | 6.6/7.3 | Combined |
[41] | Hybrid (frequency and pattern) | 5 PIN diodes | 50 × 60 | 4G | 4/3.3/4/5.2 | Combined |
[42] | Hybrid (frequency and pattern) | N/A | 50 × 50 | 4G | 6.4/2/2 | Combined |
This work | Hybrid (frequency and pattern) | 18 NMOS transistors | 112 × 52 | 5G | 3.8/8.3/7.1 | Independently tuned |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shereen, M.K.; Khattak, M.I.; Al-Hasan, M. A Frequency and Radiation Pattern Combo-Reconfigurable Novel Antenna for 5G Applications and Beyond. Electronics 2020, 9, 1372. https://doi.org/10.3390/electronics9091372
Shereen MK, Khattak MI, Al-Hasan M. A Frequency and Radiation Pattern Combo-Reconfigurable Novel Antenna for 5G Applications and Beyond. Electronics. 2020; 9(9):1372. https://doi.org/10.3390/electronics9091372
Chicago/Turabian StyleShereen, Muhammad Kamran, Muhammad Irfan Khattak, and Mu’ath Al-Hasan. 2020. "A Frequency and Radiation Pattern Combo-Reconfigurable Novel Antenna for 5G Applications and Beyond" Electronics 9, no. 9: 1372. https://doi.org/10.3390/electronics9091372
APA StyleShereen, M. K., Khattak, M. I., & Al-Hasan, M. (2020). A Frequency and Radiation Pattern Combo-Reconfigurable Novel Antenna for 5G Applications and Beyond. Electronics, 9(9), 1372. https://doi.org/10.3390/electronics9091372