Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications
Abstract
:1. Introduction
2. The Motivation of Energy Harvesting in IoT
3. Research Trends in the EHS for IoT Devices
3.1. Energy Harvesting (EH) Concepts
3.2. Energy Harvesting (EH) Efficiencies
3.3. Energy Storage in EH Systems
4. Power Requirement of IoT Sensors and Devices
5. Energy Harvesting in IoT (EHIoT)
5.1. Ambient Energy Sources
5.1.1. PV or Solar Energy
5.1.2. Thermoelectric Generator (TEG)
5.1.3. Piezoelectric Effect
5.1.4. Pyroelectric Effect
5.1.5. Triboelectric Effect
5.1.6. Electromagnetic Induction (EMI)
5.1.7. Microbial Fuel Cells (MFCs)
5.1.8. Radio Frequency (RF)
5.1.9. Wind Energy Harvesting
5.1.10. Acoustic Energy Harvesting (AEH)
5.2. Human-Based Energy Harvesters
6. Challenges and Recommendations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-enabled smart cities: State-of-the-art and future trends. Meas. J. Int. Meas. Confed. 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, USA, 2–7 October 2016. [Google Scholar]
- Pötsch, A.; Berger, A.; Springer, A. Efficient analysis of power consumption behaviour of embedded wireless IoT systems. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference, Turin, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar]
- Dhillon, P.K.; Kalra, S. Elliptic curve cryptography for real time embedded systems in IoT networks. In Proceedings of the 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), Rajpura, India, 14–16 October 2016; pp. 1–6. [Google Scholar]
- Patil, N.; Ambatkar, S.; Kakde, S. IoT based smart surveillance security system using raspberry Pi. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 344–348. [Google Scholar]
- Sruthy, S.; George, S.N. WiFi enabled home security surveillance system using Raspberry Pi and IoT module. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, India, 8–10 August 2017; pp. 1–6. [Google Scholar]
- Jyothi, S.N.; Vardhan, K.V. Design and implementation of real time security surveillance system using IoT. In Proceedings of the 2016 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 21–22 October 2016; pp. 1–5. [Google Scholar]
- Nikolaidis, P.; Didic, A.; Mubeen, S.; Pei-Breivold, H.; Sandström, K.; Behnam, M. Applying Mitigation Mechanisms for Cloud-based Controllers in Industrial IoT Applications. In Proceedings of the Internet-of-Things Symposium. IoT Symposium, Amsterdam, The Netherlands, 4–9 October 2015. [Google Scholar]
- Mubeen, S.; Nikolaidis, P.; DIdic, A.; Pei-Breivold, H.; Sandstrom, K.; Behnam, M. Delay Mitigation in Offloaded Cloud Controllers in Industrial IoT. IEEE Access 2017, 5, 4418–4430. [Google Scholar] [CrossRef]
- Bardwell, M.; Wong, J.; Zhang, S.; Musilek, P. Design considerations for IoT-based PV charge controllers. In Proceedings of the 2018 IEEE World Congress on Services (SERVICES), San Francisco, CA, USA, 2–7 July 2018; pp. 59–60. [Google Scholar]
- Sherly, J.; Somasundareswari, D. Internet of things based smart transportation systems. Int. Res. J. Eng. Technol. 2015, 2, 1207–1210. [Google Scholar]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Thikshaja, U.K. Exploiting real-time big data to empower smart transportation using big graphs. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 135–139. [Google Scholar]
- Neto, A.J.V.; Zhao, Z.; Rodrigues, J.J.P.C.; Camboim, H.B.; Braun, T. Fog-based crime-assistance in smart iot transportation system. IEEE Access 2018, 6, 11101–11111. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Grady, S. Powering Wearable Technology and Internet of Everything Devices; Cymbet Corp: Elk River, MN, USA, 2014; Volume WP-72-10, pp. 1–17. [Google Scholar]
- Nguyen Gia, T.; Sarker, V.K.; Tcarenko, I.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Energy efficient wearable sensor node for IoT-based fall detection systems. Microprocess. Microsyst. 2018, 56, 34–46. [Google Scholar] [CrossRef]
- Arias, O.; Wurm, J.; Hoang, K.; Jin, Y. Privacy and security in internet of things and wearable devices. IEEE Trans. Multi Scale Comput. Syst. 2015, 1, 99–109. [Google Scholar] [CrossRef]
- Mani, V.; Abhilasha; Gunasekhar. Iot based smart energy tracking system. Int. J. Appl. Eng. Res. 2017, 12, 5455–5462. [Google Scholar]
- Mois, G.; Folea, S.; Sanislav, T. Analysis of Three IoT-Based Wireless Sensors for Environmental Monitoring. IEEE Trans. Instrum. Meas. 2017, 66, 2056–2064. [Google Scholar] [CrossRef]
- Tellez, M.; El-Tawab, S.; Heydari, H.M. Improving the security of wireless sensor networks in an IoT environmental monitoring system. In Proceedings of the 2016 IEEE systems and information engineering design symposium (SIEDS), Charlottesville, VA, USA, 29 April 2016; pp. 72–77. [Google Scholar]
- Alvarez-Campana, M.; López, G.; Vázquez, E.; Villagrá, V.A.; Berrocal, J. Smart CEI moncloa: An iot-based platform for people flow and environmental monitoring on a Smart University Campus. Sensors 2017, 17, 2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalatzis, N.; Avgeris, M.; Dechouniotis, D.; Papadakis-Vlachopapadopoulos, K.; Roussaki, I.; Papavassiliou, S. Edge computing in iot ecosystems for uav-enabled early fire detection. In Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018; pp. 106–114. [Google Scholar]
- Kumar Sharma, A.; Faiz Raza Ansari, M.; Firoz Siddiqui, M.; Ataullah Baig, M.; Noida, G. Iot Enabled Forest Fire Detection and Online Monitoring System (By Using Atmega 328-P Microcontroller). Int. J. Curr. Trends Eng. Res. 2017, 3, 50–54. [Google Scholar]
- Muhammad, K.; Khan, S.; Elhoseny, M.; Hassan Ahmed, S.; Wook Baik, S. Efficient Fire Detection for Uncertain Surveillance Environment. IEEE Trans. Ind. Inform. 2019, 15, 3113–3122. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zhang, L.; Yang, Y.; Kang, Q.; Sun, D. Object Tracking for a Smart City Using IoT and Edge Computing. Sensors 2019, 19, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koubaa, A.; Qureshi, B. DroneTrack: Cloud-Based Real-Time Object Tracking Using Unmanned Aerial Vehicles over the Internet. IEEE Access 2018, 6, 13810–13824. [Google Scholar] [CrossRef]
- Anandhi, S.; Anitha, R.; Sureshkumar, V. IoT enabled RFID authentication and secure object tracking system for smart logistics. Wirel. Pers. Commun. 2019, 104, 543–560. [Google Scholar] [CrossRef]
- Celesti, A.; Galletta, A.; Carnevale, L.; Fazio, M.; Ĺay-Ekuakille, A.; Villari, M. An IoT cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing. IEEE Sens. J. 2017, 18, 4795–4802. [Google Scholar] [CrossRef]
- Sukode, S.; Gite, S. Vehicle traffic congestion control & monitoring system in iot. Int. J. Appl. Eng. Res. 2015, 10, 19513–19523. [Google Scholar]
- Darbari, M.; Yagyasen, D.; Tiwari, A. Intelligent traffic monitoring using Internet of Things (IoT) with semantic Web. In Proceedings of the Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI); Springer: Berlin, Germany, 2015; Volume 1, pp. 455–462. [Google Scholar]
- Dhingra, S.; Madda, R.B.; Patan, R.; Jiao, P.; Barri, K.; Alavi, A.H. Internet of things-based fog and cloud computing technology for smart traffic monitoring. Internet Things 2020, 100175, in press. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Kale, A.P.; Sonavane, S.P. IoT based Smart Farming: Feature subset selection for optimized high-dimensional data using improved GA based approach for ELM. Comput. Electron. Agric. 2019, 161, 225–232. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhayatmy, G.; Dey, N.; Ashour, A.S. Internet of Things based wireless body area network in healthcare. In Internet of Things and Big Data Analytics toward Next-Generation Intelligence; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 3–20. [Google Scholar]
- Mainanwal, V.; Gupta, M.; Upadhayay, S.K. A survey on wireless body area network: Security technology and its design methodology issue. In Proceedings of the 2015 international conference on innovations in information, embedded and communication systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Hassan, M.M.; Lin, K.; Yue, X.; Wan, J. A multimedia healthcare data sharing approach through cloud-based body area network. Futur. Gener. Comput. Syst. 2017, 66, 48–58. [Google Scholar] [CrossRef]
- Latré, B.; Braem, B.; Moerman, I.; Blondia, C.; Demeester, P. A survey on wireless body area networks. Wirel. Netw. 2011, 17, 1–18. [Google Scholar] [CrossRef]
- Jacob Morgan A Simple Explanation Of “The Internet Of Things”. Available online: https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#23a45c0e1d09 (accessed on 13 April 2020).
- Babar, M.; Rahman, A.; Arif, F.; Jeon, G. Energy-harvesting based on internet of things and big data analytics for smart health monitoring. Sustain. Comput. Inform. Syst. 2018, 20, 155–164. [Google Scholar] [CrossRef]
- Akan, O.B.; Cetinkaya, O.; Koca, C.; Ozger, M. Internet of Hybrid Energy Harvesting Things. IEEE Internet Things J. 2018, 5, 736–746. [Google Scholar] [CrossRef]
- Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart objects as building blocks for the internet of things. IEEE Internet Comput. 2010, 14, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 31, 1–19. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Kim, T.Y.; Al Hossain, M.S.; Kim, S.W.; Kim, J.H. All-in-one energy harvesting and storage devices. J. Mater. Chem. A 2016, 4, 7983–7999. [Google Scholar] [CrossRef] [Green Version]
- Zergoune, Z.; Kacem, N.; Bouhaddi, N. On the energy localization in weakly coupled oscillators for electromagnetic vibration energy harvesting. Smart Mater. Struct. 2019, 28, 07LT02. [Google Scholar] [CrossRef] [Green Version]
- Drezet, C.; Kacem, N.; Bouhaddi, N. Design of a nonlinear energy harvester based on high static low dynamic stiffness for low frequency random vibrations. Sens. Actuators A Phys. 2018, 283, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Sari, I.; Balkan, T.; Kulah, H. An electromagnetic micro power generator for wideband environmental vibrations. Sens. Actuators A Phys. 2008, 145–146, 405–413. [Google Scholar] [CrossRef]
- Mann, B.P.; Sims, N.D. Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 2009, 319, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.; Weiss, L. Performance analysis of a miniature free piston expander for waste heat energy harvesting. Energy Convers. Manag. 2013, 76, 883–892. [Google Scholar] [CrossRef]
- Lee, S.W.; Yang, Y.; Lee, H.-W.; Ghasemi, H.; Kraemer, D.; Chen, G.; Cui, Y. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.G.; Cha, H.K.; Park, W.T. RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Zungeru, A.M.; Ang, L.-M.; Prabaharan, S.; Seng, K.P. Radio frequency energy harvesting and management for wireless sensor networks. In Green Mobile Devices and Networks: Energy Optimization and Scavenging Techniques; CRC Press: New York, NY, USA, 2012; pp. 341–368. [Google Scholar]
- Fleck, J. Development and establishment in artificial intelligence. In Scientific Establishments and Hierarchies; Springer: Berlin, Germany, 1982; pp. 169–217. [Google Scholar]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhang, Y.; Dang, D.K.; Kim, E.J.; Misra, R.D.K.; Deng, L.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Shivarama Krishna, K.; Sathish Kumar, K. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [Google Scholar] [CrossRef]
- Shi, Q.; He, T.; Lee, C. More than energy harvesting—Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 2019, 57, 851–871. [Google Scholar] [CrossRef]
- Selvan, K.V.; Mohamed Ali, M.S. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 2016, 54, 1035–1047. [Google Scholar] [CrossRef]
- Keertikumar, M.; Shubham, M.; Banakar, R.M. Evolution of IoT in smart vehicles: An overview. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Noida, India, 8–10 October 2015; pp. 804–809. [Google Scholar]
- Company, R. Experiments Involving Microwave Beam to Power and Position Helicopter. IEEE Trans. Aerosp. Electron. Syst. 1969, 5, 692–702. [Google Scholar]
- Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. In Proceedings of the Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), Pittsburgh, PA, USA, 19–20 October 1998; pp. 132–139. [Google Scholar]
- Roundy, S.; Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131. [Google Scholar] [CrossRef] [Green Version]
- Lallart, M.; Cottinet, P.; Guyomar, D.; Lebrun, L. Electrostrictive polymers for mechanical energy harvesting. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 523–535. [Google Scholar] [CrossRef]
- Tan, S.-S.; Liu, C.-Y.; Yeh, L.-K.; Chiu, Y.-H.; Lu, M.S.-C.; Hsu, K.Y.J. An integrated low-noise sensing circuit with efficient bias stabilization for CMOS MEMS capacitive accelerometers. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2661–2672. [Google Scholar] [CrossRef]
- Iannacci, J. Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT)—A review with focus on mechanical vibrations. J. King Saud Univ. Sci. 2019, 31, 66–74. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar-wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Rehman, S.; Al-Sulaiman, F.A. A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review. Renew. Sustain. Energy Rev. 2018, 97, 456–477. [Google Scholar] [CrossRef]
- Kasseris, E.; Samaras, Z.; Zafeiris, D. Optimization of a wind-power fuel-cell hybrid system in an autonomous electrical network environment. Renew. Energy 2007, 32, 57–79. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2009, 13, 2111–2118. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Li, H.; Wang, Y.; Li, X.; Ma, K.; Li, S.; Chang, M.F.; John, S.; Xie, Y.; et al. Ambient energy harvesting nonvolatile processors: From circuit to system. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]
- Bhandari, B.; Lee, K.T.; Lee, G.Y.; Cho, Y.M.; Ahn, S.H. Optimization of hybrid renewable energy power systems: A review. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 99–112. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef] [Green Version]
- del Real, A.J.; Arce, A.; Bordons, C. Optimization strategy for element sizing in hybrid power systems. J. Power Sources 2009, 193, 315–321. [Google Scholar] [CrossRef]
- Vosen, S.R.; Keller, J.O. Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies. Int. J. Hydrogen Energy 1999, 24, 1139–1156. [Google Scholar] [CrossRef]
- Garg, N.; Garg, R. Energy harvesting in IoT devices: A survey. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 127–131. [Google Scholar]
- Kulatunga, C.; Bhargava, K.; Vimalajeewa, D.; Ivanov, S. Cooperative in-network computation in energy harvesting device clouds. Sustain. Comput. Informatics Syst. 2017, 16, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Tsui, C.Y.; Ki, W.H. A micro power management system and maximum output power control for solar energy harvesting applications. In Proceedings of the 2007 International Symposium on Low Power Electronics and Design (ISLPED ’07), Portland, OR, USA, 27–29 August 2007; pp. 298–303. [Google Scholar]
- Zeng, G.; Bahk, J.-H.; Bowers, J.E.; Zide, J.M.O.; Gossard, A.C.; Bian, Z.; Singh, R.; Shakouri, A.; Kim, W.; Singer, S.L. Er As:(In Ga As) 1− x (In Al As) x alloy power generator modules. Appl. Phys. Lett. 2007, 91, 263510. [Google Scholar] [CrossRef] [Green Version]
- Khvostikov, V.P.; Khvostikova, O.A.; Gazaryan, P.Y.; Sorokina, S.V.; Potapovich, N.S.; Malevskaya, A.V.; Kaluzhniy, N.A.; Shvarts, M.Z.; Andreev, V.M. Photovoltaic cells based on GaSb and Ge for solar and thermophotovoltaic applications. J. Sol. Energy Eng. 2007, 129, 291–297. [Google Scholar] [CrossRef]
- Lin, D.; Guo, M.S.; Lam, K.H.; Kwok, K.W.; Chan, H.L.W. Lead-free piezoelectric ceramic (K0. 5Na0. 5) NbO3 with MnO2 and K5. 4Cu1. 3Ta10O29 doping for piezoelectric transformer application. Smart Mater. Struct. 2008, 17, 35002. [Google Scholar] [CrossRef]
- Fan, Y.; Sharbrough, E.; Liu, H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42, 8101–8107. [Google Scholar] [CrossRef] [PubMed]
- Pykälä, M.-L.; Sipilä, K.; Mroueh, U.-M.; Wahlström, M.; Huovila, H.; Tynell, T.; Tervo, J. Susterel Energy Harvesting Roadmap for Societal Applications; VTT Research Report VTT: Espoo, Finland, 2012. [Google Scholar]
- Hayes, M. Synergies between Energy Harvesting and Power Electronics Slides. Available online: https://resourcecenter.ieee-pels.org/webinars/PELSWEB010202016.html (accessed on 23 March 2020).
- Franciscatto, B. Design and Implementation of a New Low-Power Consumption DSRC Transponder. Ph.D. Thesis, Université de Grenoble, Saint-Martin-d’Hères, France, 2014. [Google Scholar]
- Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Zahiri Barsari, V.; Liu, H.; Dohler, M.; Naebe, M. Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; Van Schaijk, R.; Visser, H.J.; Penders, J.; Van Hoof, C. Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circuits Mag. 2010, 2, 29–38. [Google Scholar] [CrossRef]
- Ünlü, F.; Wawrla, L.; Dìaz, A. Energy Harvesting Technologies for Iot Edge Devices; 4E, Int. Energy Agency: Paris, France, 2018. [Google Scholar]
- Alsharif, M.H.; Kim, S. SS symmetry Energy Harvesting Techniques for Wireless Sensor Networks / Radio-Frequency Identification: A Review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef] [Green Version]
- Dargie, W. Principles and Applications of Ubiquitous Sensing, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 253–277. ISBN 1119091349. [Google Scholar]
- Cetinkaya, O.; Akan, O.B. Electric-field energy harvesting in wireless networks. IEEE Wirel. Commun. 2017, 24, 34–41. [Google Scholar] [CrossRef]
- Zhao, X.; Keutel, T.; Baldauf, M.; Kanoun, O. Energy harvesting for a wireless-monitoring system of overhead high-voltage power lines. IET Gener. Transm. Distrib. 2013, 7, 101–107. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutorials 2010, 13, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Starner, T. Human-powered wearable computing. IBM Syst. J. 1996, 35, 618–629. [Google Scholar] [CrossRef]
- Carreon-Bautista, S.; Huang, L.; Sanchez-Sinencio, E.; Fellow, L. An Autonomous Energy Harvesting Power Management Unit with Digital Regulation for IoT Applications. IEEE J. Solid State Circuits 2016, 51, 1–18. [Google Scholar] [CrossRef]
- Penella-López, M.T.; Gasulla-Forner, M. Powering Autonomous Sensors; Springer: Berlin, Germany, 2011; ISBN 978-94-0071-573-8. [Google Scholar]
- Renewable, I.; Agency, E. Renewable Energy Statistics 2019 Statistiques De Énergie Renouvelable 2019 Estadísticas De Energía; IRENA: Abu Dhabi, UAE, 2019; ISBN 978-92-9260-137-9. [Google Scholar]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Trans. Sens. Networks 2018, 14, 1–50. [Google Scholar] [CrossRef]
- Fahrenbruch, A.; Bube, R. Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion; Elsevier: Cambridge, MA, USA, 2012; ISBN 032-31-453-88. [Google Scholar]
- Morais, R.; Matos, S.G.; Fernandes, M.A.; Valente, A.L.G.; Soares, S.F.S.P.; Ferreira, P.; Reis, M. Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Comput. Electron. Agric. 2008, 64, 120–132. [Google Scholar] [CrossRef]
- Bhuvaneswari, P.T.V.; Balakumar, R.; Vaidehi, V.; Balamuralidhar, P. Solar energy harvesting for wireless sensor networks. In Proceedings of the 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, Indore, India, 23–25 July 2009; pp. 57–61. [Google Scholar]
- Kobbekaduwa, K.P.V.B. Modelling and Analysis of Thermoelectric Generation of Materials Using Matlab/Simulink. Int. J. Energy Power Eng. 2016, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Dalala, Z.M.; Saadeh, O.; Bdour, M.; Zahid, Z.U. A new maximum power point tracking (MPPT) algorithm for thermoelectric generators with reduced voltage sensors count control. Energies 2018, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Curie, J.; Curie, P. Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. Soc. Min. Fr. 1880, 3, 90. [Google Scholar]
- Curie, J.; Curie, P. Contractions and expansions produced by voltages in hemihedral crystals with inclined faces. C. R. 1881, 93, 1137–1140. [Google Scholar]
- Jiao, P.; Egbe, K.J.I.; Xie, Y.; Nazar, A.M.; Alavi, A.H. Piezoelectric sensing techniques in structural health monitoring: A state-of-the-art review. Sensors 2020, 20, 3730. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, G.; Wang, Y.; Lin, J.; Zhang, Q.; Hofmann, H.F. Active Piezoelectric Energy Harvesting: General Principle and Experimental Demonstration. J. Intell. Mater. Syst. Struct. 2009, 20, 575–585. [Google Scholar]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Han, N.; Ho, J.C. One-Dimensional Nanomaterials for Energy Applications. In Nanocrystalline Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-01-2407-796-6. [Google Scholar]
- Fan, F.R.; Tian, Z.Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 45009. [Google Scholar] [CrossRef]
- Torres, E.; Ponce, P.; Molina, A. Electromagnetic induction generator toward energy harvesting for dynamic systems. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 418–422. [Google Scholar]
- Ambrozkiewicz, B.; Litak, G.; Wolszczak, P. Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy. Appl. Sci. 2020, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; He, X.; Wang, X.; Jiang, S. A Nonlinear Electromagnetic Energy Harvesting System for Self-Powered Wireless Sensor Nodes. J. Sens. Actuator Netw. 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Shen, W.; Xu, Y. Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing. Eng. Struct. 2012, 34, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; He, X.; Jiang, S.; Wang, X. Impact-based electromagnetic energy harvester with high output voltage under low-level excitations. Energies 2017, 10, 1848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Corr, L.R.; Ma, T. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance. Mech. Syst. Signal Process. 2018, 101, 55–66. [Google Scholar] [CrossRef]
- Aelterman, P.; Rabaey, K.; Clauwaert, P.; Verstraete, W. Microbial fuel cells for wastewater treatment. Water Sci. Technol. 2006, 54, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Logan, B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Shinde, V.B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour. Technol. 2007, 98, 2879–2885. [Google Scholar] [CrossRef]
- Oh, S.; Logan, B.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 2005, 39, 4673–4682. [Google Scholar] [CrossRef]
- Le, T.; Mayaram, K.; Fiez, T. Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks. IEEE J. Solid State Circuits 2008, 43, 1287–1302. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Song, C.; Huang, Y. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl. Phys. Lett. 2020, 116, 60501. [Google Scholar] [CrossRef]
- Orrego, S.; Shoele, K.; Ruas, A.; Doran, K.; Caggiano, B.; Mittal, R.; Kang, S.H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 2017, 194, 212–222. [Google Scholar] [CrossRef]
- Nabavi, S.; Zhang, L. Portable wind energy harvesters for low-power applications: A survey. Sensors 2016, 16, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Jung, I.; Kang, C. A brief review of sound energy harvesting. Nano Energy 2018, 56, 169–183. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, Z.; Luo, J.; Chou, X. Recent developments of acoustic energy harvesting: A review. Micromachines 2019, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Awal, M.R.; Jusoh, M.; Sabapathy, T.; Kamarudin, M.R.; Rahim, R.A. State-of-the-Art Developments of Acoustic Energy Transfer. Int. J. Antennas Propag. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
Ref. | Year | Source | Materials Approaches | Advantages | Obtained Results |
---|---|---|---|---|---|
[81] | 2007 | Thermoelectric | ErAs:InGaAs/ (InGaAs) (InAlAs) | Thermodynamically steady superlattice, augmented thermopower coefficient, lower electrical energy loss | 2500 mW/cm2 (at 3.5 V) |
[82] | 2007 | Thermo-photovoltaic | p-GaAs/p-Ge/n-Ge cell structure | Solid cell coat with optimized bandgap energy, permit high light source absorbance | 2.5 W/cm2 (at 3.5 V, 20 µm thickness) |
[83] | 2008 | Piezoelectric | KNN/Mn/KCT material | Lead-free, high curie temperature, higher density, and piezoelectric coefficient | 10,000 mW/cm3 |
[84] | 2008 | Microbial FC | Anode-cathode shallow area distinction | Smooth electron flow, reduced inner resistance | 6.86 W/m2 (at 2.62 mA/cm2) |
Energy Source | Characteristics | Scavenging Device | Power Density | Harvested Power |
---|---|---|---|---|
Light | Indoor | Solar Cell | 0.1 mW/cm2 | 10 µW/cm2 |
Outdoor | 100 mW/cm2 | 10 mW/cm2 | ||
Vibration or Motion | Human | Piezoelectric Electrostatic | 0.5 m at 1 Hz 1 m/s2 at 50 Hz | 4 µW/cm2 |
Industry | Piezoelectric Electromagnetic | 1 m at 5 Hz 10 m/s2 at 1 kHz | 100 µW/cm2 | |
Thermal | Human | Thermoelectric | 20 mW/cm2 | 30 µW/cm2 |
Industry | 100 mW/cm2 | 1–10 mW/cm2 | ||
Radio Frequency | GSM 900 MHz | Antenna | 0.3 µW/cm2 | 0.1 µW/cm2 |
WiFi | 0.015 µW/cm2 | 0.001 µW/cm2 |
IoT Sensors/Applications | Energy Harvesting Ambient Sources | ||||
---|---|---|---|---|---|
PV | Wind | EMI * | TEG | ||
Smart Building, Smart Home | Lighting | • | • | • | |
Air Quality Monitor | • | • | |||
Surveillance Camera | • | • | |||
Smart Door Lock | • | ||||
Smart Thermostat | • | • | • | ||
Outdoor Sensor | • | • | • | • | |
Wearable | Smart Watch | • | |||
Tracking | • | ||||
Fitness | Medical Patch | • | • | ||
Fitness Band | • | ||||
Industry | Automation | • | • | ||
Machine Monitor | • | • | |||
Vehicles | Vehicle Tracker | • |
References | ES * | Features * | EH * | Harvester * | CE * | Power Density * | Advantages * | Disadvantages * |
---|---|---|---|---|---|---|---|---|
[42,78,91,92] | Sun Light (Outdoor) | A, UC, P | Fair | PV Cell | 16–17% | 10–100 mW/cm2 | High output voltage | Unavailable at night |
[42,78,91,92] | Art. Light (Indoor) | A, UC, P | Fair | PV Cell | 16–17% | 10–100 µW/cm2 | High output Voltage | Low conversion rate |
[42,78,91,92] | Wind (Outdoor) | A, UC, P | Good | WG | - | 3.5 mW/cm2 Speed ≤ 8.4 m/s | Available (D&N) | Unavailable in CA |
[42,78,91,92] | Wind (Indoor) | A, UC, P | Good | WG | - | 35 µW/cm2 Speed < 1 ms | Available (D&N) | Unavailable in CA |
[42,78,92] | Motion | C, PP | Fair | Piezoelectric | - | 200 µW/cm2 | Lightweight | Highly variable output |
[42,78,92] | Thermal | A, UC, P | Poor | Thermocouple | ≤1% for ∆T < 40% | ≅60 µW/cm2 at ∆T = 5 °C | Reliable, longer life, low maintenance | NP, low energy conversion efficiency |
[78] | Vibration | A, C, P | Poor | EMI | - | 0.2 mW/cm2 | No voltage source | Brittle material |
[48,78,93] | RF | PP, PC | Good | Rectennas | - | 1 µW/cm2 | Enough in urbanized zone, permit mobility | Distance dependent, low power density |
[42,93,94,95] | Airflow | A, UC, UP | Fair | Anemometer, Piezo turbines | - | 100 mW/cm2 | Independent of grid, available (D&N) | Fluctuating density, tough to implement |
[92,96] | FM | C, P | Fair | Piezoelectric | 11% | 2.1 mW | Available | Variable, NP |
[92] | Footfalls | C, P | Fair | Piezoelectric | 7.5% | 5 W | Available | Highly variable, NP |
[92,96] | Breathing | UC, UP | Good | R-F | 50% | 0.42 W | Available | Non-periodic |
[42,93,94] | M-Field | C, P | Good | CT | - | 150 µW/cm3 | Easy to implement | High current flow |
[42,93,94] | E-Field | C, P | Good | Metallic plates | - | 17 µW/cm3 | SD, available | Mechanical constraints |
[92] | Exhalation | UC, UP | Good | Breath mask | 40% | 0.4 W | Low efficiency | Non-periodic |
[92,96] | BP | PHP, UC, UP | Good | MG | 40% | 0.37 W | Low efficiency | Non-periodic |
[97] | MFC | Fair | Fuel cell | - | 10 µW-2 mW | NH, used in biosensor | Low output voltage |
HBDS | Available Power | Usable Power |
---|---|---|
Finger Motion | 6.9–19 mW | 0.76–2.1 mW |
Breathing | 0.83 W | 0.42 W |
Footfall | 67 W | 5.0–8.3 W |
Exhalation | 1.0 W | 0.40 W |
Blood Pressure | 0.93 W | 0.37 W |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Hamid, F.A.; Tiong, S.K.; Amin, N. Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics 2020, 9, 1345. https://doi.org/10.3390/electronics9091345
Mishu MK, Rokonuzzaman M, Pasupuleti J, Shakeri M, Rahman KS, Hamid FA, Tiong SK, Amin N. Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics. 2020; 9(9):1345. https://doi.org/10.3390/electronics9091345
Chicago/Turabian StyleMishu, Mahmuda Khatun, Md. Rokonuzzaman, Jagadeesh Pasupuleti, Mohammad Shakeri, Kazi Sajedur Rahman, Fazrena Azlee Hamid, Sieh Kiong Tiong, and Nowshad Amin. 2020. "Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications" Electronics 9, no. 9: 1345. https://doi.org/10.3390/electronics9091345
APA StyleMishu, M. K., Rokonuzzaman, M., Pasupuleti, J., Shakeri, M., Rahman, K. S., Hamid, F. A., Tiong, S. K., & Amin, N. (2020). Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics, 9(9), 1345. https://doi.org/10.3390/electronics9091345