Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices
Abstract
:1. Introduction
2. Theory
2.1. (0001)-Oriented Hamiltonian and Built-in Potential
2.2. (110)-Oriented-Oriented Hamiltonian
2.3. Self-Consistent Calculation
2.4. Optical Matrix Element and Spontaneous Emission Coefficient
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructure; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Marquardt, O.; Hickel, T.; Neugebauer, J. Polarization-induced charge carrier separation in polar and nonpolar grown GaN quantum dots. J. Appl. Phys. 2009, 106, 083707. [Google Scholar] [CrossRef]
- Schulz, S.; Berube, A.; O’Reilly, E.P. Polarization fields in nitride-based quantum dots grown on nonpolar substrates. Phys. Rev. B 2009, 79, 081401. [Google Scholar] [CrossRef]
- Schulz, S.; O’Reilly, E.P. Built-in fields in non-polar InxGa1-xN quantum dots. Phys. Status Solidi C 2010, 7. [Google Scholar] [CrossRef]
- Caro, M.A.; Schulz, S.; Healy, S.; O’Reilly, E.P. Built-in field control in alloyed c-plane III-N quantum dots and wells. J. Appl. Phys. 2011, 109, 084110. [Google Scholar] [CrossRef]
- Young, T.D.; Jurczak, G.; Lotsari, A.; Dimitrakopulos, G.P.; Komninou, P.; Dłużewski, P. A study of the piezoelectric properties of semipolar 1122 GaN/AlN quantum dots. Phys. Status Solidi B 2015, 252, 2296–2303. [Google Scholar] [CrossRef]
- Budagosky, J.A.; Garro, N.; Cros, A.; García-Cristóbal, A.; Fount, S.; Daudin, B. Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: The effect of stacking faults in the reduction of the internal electric field. Mater. Sci. Semicond. Process. 2016, 49, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, 10024. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Botchkarev, A.; Rockett, A.; Morkoc, H. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy. Appl. Phys. Lett. 1996, 68, 2541. [Google Scholar] [CrossRef]
- Park, S.-H. Crystal orientation effects on electronic properties of Wurtzite GaN/AlGaN quantum wells with spontaneous and piezoelectric polarization. Jpn. J. Appl. Phys. 2000, 39, 3478. [Google Scholar] [CrossRef]
- Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H.T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K.H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865. [Google Scholar] [CrossRef] [PubMed]
- Su, G.L.; Frost, T.; Bhattacharya, P.; Dallesasse, J.M.; Chuang, S.L. Detailed model for the In0.18Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission. Opt. Express 2014, 22, 22716. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Ahn, D. Screening effects on the optical properties of II-VI wurtzite ZnO/MgO quantum dots. Phys. Rev. B 2018, 97, 075301. [Google Scholar] [CrossRef]
- Chuang, S.L.; Chang, C.S. k·p method for strained wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Chuang, S.L. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 1999, 59, 4725. [Google Scholar] [CrossRef]
- Boxberg, F.; Tulkki, J. Theory of the electronic structure and carrier dynamics of strain-induced (Ga, In)As quantum dots. Rep. Prog. Phys. 2007, 70, 1425. [Google Scholar] [CrossRef] [Green Version]
- Hinckley, J.M.; Singh, J. Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. Phys. Rev. B 1990, 42, 3546. [Google Scholar] [CrossRef] [PubMed]
- Nye, J.F. Physical Properties of Crystals; Clarendon: Oxford, UK, 1989. [Google Scholar]
- Hong, K.B.; Kuo, M.K. Effect of piezoelectric constants in electronic structures of InGaN quantum dots. Semicond. Sci. Technol. 2013, 28, 105006. [Google Scholar] [CrossRef]
- Williams, D.P.; Andreev, A.D.; O’Reilly, E.P.; Faux, D.A. Derivation of built-in polarization potentials in nitride-based semiconductor quantum dots. Phys. Rev. B 2005, 72, 235318. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Chuang, S.L. Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers. Appl. Phys. Lett. 1998, 72, 3103. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H.; Ahn, D. Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices. Electronics 2020, 9, 1256. https://doi.org/10.3390/electronics9081256
Park S-H, Ahn D. Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices. Electronics. 2020; 9(8):1256. https://doi.org/10.3390/electronics9081256
Chicago/Turabian StylePark, Seoung-Hwan, and Doyeol Ahn. 2020. "Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices" Electronics 9, no. 8: 1256. https://doi.org/10.3390/electronics9081256
APA StylePark, S.-H., & Ahn, D. (2020). Non-Polar Wurtzite (1120) GaN/AlN Quantum Dots for Highly Efficient Opto-Electronic Devices. Electronics, 9(8), 1256. https://doi.org/10.3390/electronics9081256