Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications
Abstract
1. Introduction
2. Antenna Designs and Numerical Settings
3. Numerical and Experimental Results and Analyses
3.1. Numerical Simulations
3.2. Experimental Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Persson, M.; Fhager, A.; Trefná, H.D.; Yu, Y.; McKelvey, T.; Pegenius, G.; Karlsson, J.A.; Elam, M. Microwave-Based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 2014, 61, 2806–2817. [Google Scholar] [CrossRef]
- Asili, M.; Chen, P.; Hood, A.Z.; Purser, A.; Hulsey, R.; Johnson, L.; Ganesan, A.V.; Demirci, U.; Topsakal, E. Flexible microwave antenna applicator for chemo-thermotherapy of the breast. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1778–1781. [Google Scholar] [CrossRef]
- Rokunuzzaman, M.; Samsuzzaman, M.; Islam, M.T. Unidirectional Wideband 3-D antenna for human head-imaging application. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 169–172. [Google Scholar] [CrossRef]
- Mobashsher, A.; Abbosh, A. Compact 3-D slot-loaded folded dipole antenna with unidirectional radiation and low impulse distortion for head imaging applications. IEEE Trans. Antennas Propag. 2016, 64, 3245–3250. [Google Scholar] [CrossRef]
- Mobashsher, A.; Abbosh, A. CPW-fed low-profile directional antenna operating in low microwave band for wideband medical diagnostic systems. Electron. Lett. 2014, 50, 246–248. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Abbosh, A. Development of compact directional antenna utilising plane of symmetry for wideband brain stroke detection systems. Electron. Lett. 2014, 50, 850–851. [Google Scholar] [CrossRef]
- Schwarz, U.; Thiel, F.; Seifert, F.; Stephan, R.; Hein, M. Ultrawideband antennas for magnetic resonance imaging navigator techniques. IEEE Trans. Antennas Propag. 2010, 58, 2107–2112. [Google Scholar] [CrossRef]
- Xu, L.J.; Duan, Z.; Tang, Y.M.; Zhang, M. A Dual-Band On-Body repeater antenna for body sensor network. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1649–1652. [Google Scholar] [CrossRef]
- Li, X.; Jalilvand, M.; Sit, Y.L.; Zwick, T. A compact double-layer on-body matched bowtie antenna for medical diagnosis. IEEE Trans. Antennas Propag. 2014, 62, 1808–1816. [Google Scholar] [CrossRef]
- Porter, E.; Bahrami, H.; Santorelli, A.; Gosselin, B.; Rusch, L.A.; Popović, M. A Wearable microwave antenna array for time-domain breast tumor screening. IEEE Trans. Med. Imaging 2016, 35, 1501–1509. [Google Scholar] [CrossRef]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popovic, M.; Rusch, L.A. Flexible 16 Antenna Array for Microwave Breast Cancer Detection. Biomed. Eng. IEEE Trans. 2015, 62, 2516–2525. [Google Scholar] [CrossRef]
- Bocan, K.N.; Mickle, M.H.; Sejdić, E. Simulating, modeling, and sensing variable tissues for wireless implantable medical devices. IEEE Trans. Microw. Theory Tech. 2018, 66, 3547–3556. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Lin, H.; Juwono, F.H. A novel differentially fed compact dual-band implantable antenna for biotelemetry applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1791–1794. [Google Scholar] [CrossRef]
- Bakogianni, S.; Koulouridis, S. An implantable planar dipole antenna for wireless MedRadio-Band biotelemetry devices. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 234–237. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Zamani, A.; Bialkowski, K.; Abbosh, A. Foam embedded wideband antenna array for early congestive heart failure detection with tests using artificial phantom with animal organs. IEEE Trans. Antennas Propag. 2015, 63, 5138–5143. [Google Scholar] [CrossRef]
- Rokunuzzaman, M.; Ahmed, A.; Baum, T.C.; Rowe, W.S.T. Compact 3-D Antenna for medical diagnosis of the human head. IEEE Trans. Antennas Propag. 2019, 67, 5093–5103. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Yoo, H. Scalp-Implantable antenna systems for intracranial pressure monitoring. IEEE Trans. Antennas Propag. 2018, 66, 2170–2173. [Google Scholar] [CrossRef]
- Yang, Z.J.; Xiao, S.Q.; Zhu, L.; Wang, B.Z.; Tu, H.L. A Circularly polarized implantable antenna for 2.4-GHz ISM band biomedical applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2554–2557. [Google Scholar] [CrossRef]
- Ma, S.; Sydänheimo, L.; Ukkonen, L.; Björninen, T. Split-Ring resonator antenna system with cortical implant and head-worn parts for effective far-field implant communications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 710–713. [Google Scholar] [CrossRef]
- Xu, L.J.; Guo, Y.X.; Wu, W. Miniaturized circularly polarized loop antenna for biomedical applications. IEEE Trans. Antennas Propag. 2015, 63, 922–930. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Liu, X. Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 373–376. [Google Scholar] [CrossRef]
- Poon, A.S.; O’Driscoll, S.; Meng, T.H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 2010, 58, 1739–1750. [Google Scholar] [CrossRef]
- Studio, C.M. 3D EM Simulation Software. Comput. Simul. Technol. 2017. Available online: https://www.remcom.com/xfdtd-3d-em-simulation-software (accessed on 2 June 2020).
- IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz Amendment 1: Specifies Ceiling Limits for Induced and Contact Current, Clarifies Distinctions between Localized Exposure and Spatial Peak Power Density. Available online: https://ieeexplore.ieee.org/document/5433227 (accessed on 2 June 2020).
- Bashri, M.S.R.; Arslan, T.; Zhou, W.; Haridas, N. Wearable device for microwave head imaging. In Proceedings of the Microwave Conference (EuMC), 2016 46th European, IEEE, London, UK, 3–7 October 2016; pp. 671–674. [Google Scholar]
Antenna | Electrical Size | Max SAR (W/kg) | Phantom | FBR | Placement |
---|---|---|---|---|---|
[3] | 0.22λ × 0.22λ | Not shown | Inhomogeneous human head | 19 dB | On-body |
[4] | 0.29λ × 0.08λ | 0.02 (10 g) | Inhomogeneous human head | 10 dB | Off-body |
[9] | 0.05λ × 0.05λ | 0.06 (10g) | Homogeneous human head | 3.5 dB–16.5 dB | On-body |
[25] | 0.35λ × 0.15λ | Not shown | Inhomogeneous human head | Not shown | On-body |
This Work (Antenna 1) | 0.09λ × 0.09λ | 0.0884 (10 g) | Inhomogeneous human head | 6.5 dB | On-body |
This work (Antenna 2) | 0.09λ × 0.09λ | 0.0153 (10 g) | Inhomogeneous human head | 17.7 dB | On-body |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robel, M.R.; Ahmed, A.; Alomainy, A.; Rowe, W.S.T. Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications. Electronics 2020, 9, 1099. https://doi.org/10.3390/electronics9071099
Robel MR, Ahmed A, Alomainy A, Rowe WST. Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications. Electronics. 2020; 9(7):1099. https://doi.org/10.3390/electronics9071099
Chicago/Turabian StyleRobel, Md Rokunuzzaman, Asif Ahmed, Akram Alomainy, and Wayne S. T. Rowe. 2020. "Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications" Electronics 9, no. 7: 1099. https://doi.org/10.3390/electronics9071099
APA StyleRobel, M. R., Ahmed, A., Alomainy, A., & Rowe, W. S. T. (2020). Effect of A Superstrate on On-Head Matched Antennas for Biomedical Applications. Electronics, 9(7), 1099. https://doi.org/10.3390/electronics9071099