A Function Reconfigurable Antenna Based on Liquid Metal
Abstract
:1. Introduction
2. Antenna Structure
3. Design Procedures and Experimental Results
3.1. State-I
3.2. State-II
3.3. States-III, -IV, and -V
3.3.1. The Design of State-III
3.3.2. The Design of State-IV
3.3.3. The Design of State-V
4. Discussion and Comparisons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tavik, G.C.; Hilterbrick, C.L.; Evins, J.B.; Alter, J.J.; Crnkovich, J.G.; De Graaf, J.W.; Habicht, W.; Hrin, G.P.; Lessin, S.A.; Wu, D.C.; et al. The Advanced Multifunction RF Concept. IEEE Trans. Microwave Theory Tech. 2005, 53, 1009–1020. [Google Scholar] [CrossRef]
- Shen, F.; Yin, C.Y.; Guo, K.; Wang, S.M.; Gong, Y.B.; Guo, Z.Y. Low-Cost Dual-Band Multipolarization Aperture-Shared Antenna With Single-Layer Substrate. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1337–1341. [Google Scholar] [CrossRef]
- Zhang, J.F.; Cheng, Y.J.; Ding, Y.R.; Bai, C.X. A Dual-Band Shared-Aperture Antenna with Large Frequency Ratio, High Aperture Reuse Efficiency, and High Channel Isolation. IEEE Trans. Antennas Propag. 2019, 67, 853–860. [Google Scholar] [CrossRef]
- Alsath, M.G.N.; Kanagasabai, M. A Shared-Aperture Multiservice Antenna for Automotive Communications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1417–1420. [Google Scholar] [CrossRef]
- Valenzuela-Valdés, J.F.; García-Fernández, M.Á.; Martínez-González, A.; Sánchez-Hernández, D.A. The role of polarization diversity for MIMO systems under Rayleigh-fading environments. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 534–536. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Sanz-Izquierdo, B.; Parker, E.A.; Batchelor, J.C. A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation. IEEE Trans. Antennas Propag. 2015, 63, 33–40. [Google Scholar] [CrossRef]
- Wong, H.; Lin, W.; Huitema, L.; Arnaud, E.A. Multi-polarization reconfigurable antenna for wireless biomedical system. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 652–660. [Google Scholar] [CrossRef]
- Haupt, R.L.; Lanagan, M. Reconfigurable Antennas. IEEE Antennas Propag. 2013, 55, 49–61. [Google Scholar] [CrossRef]
- Panahi, A.; Bao, X.L.; Yang, K.S.; Conchubhair, O.O.; Ammann, M.J. A Simple Polarization Reconfigurable Printed Monopole Antenna. IEEE Trans. Antennas Propag. 2015, 63, 5129–5234. [Google Scholar] [CrossRef] [Green Version]
- Jie, L.; Li, J.Y.; Xu, R. Design of very simple frequency and polarization reconfigurable antenna with finite ground structure. Electron. Lett. 2018, 54, 187–188. [Google Scholar]
- Jung, T.J.; Hyeon, I.J.; Baek, C.W. Circular/Linear Polarization Reconfigurable Antenna on Simplified RF-MEMS Packaging Platform in K-Band. IEEE Trans. Antennas Propag. 2012, 60, 5039–5045. [Google Scholar] [CrossRef]
- Li, M.X.; Wu, Y.L.; Wang, W.M.; Kishk, A.A. Wideband Polarization Reconfigurable Differential Circularly Polarized Antenna. IEEE Acess 2019, 7, 64697–64703. [Google Scholar] [CrossRef]
- Tang, M.C.; Duan, Y.L.; Wu, Z.T.; Chen, X.M.; Li, M.; Ziolkowski, R.W. Pattern Reconfigurable, Vertically Polarized, Low-Profile, Compact, Near-Field Resonant Parasitic Antenna. IEEE Trans. Antennas Propag. 2019, 67, 1467–1475. [Google Scholar] [CrossRef]
- Liu, P.Q.; Li, Y.; Zhang, Z.J. Circularly Polarized 2 Bit Reconfigurable Beam-Steering Antenna Array. IEEE Trans. Antennas Propag. 2020, 68, 2416–2421. [Google Scholar] [CrossRef]
- So, J.H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv. Funct. Mater. 2009, 19, 3632–3637. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Moorefield, M.R.; Gough, R.C.; Morishita, A.M.; Dang, J.H.; Ohta, A.T.; Shiroma, W.A. Frequency tunable patch antenna with liquid-metal- actuated loading slot. Electron. Lett. 2016, 52, 498–500. [Google Scholar] [CrossRef]
- Huff, G.H.; Pan, H.; Hartl, D.J.; Frank, G.J.; Bradford, R.L.; Baur, J.W. A physically reconfigureable structurally embedded vascular antenna. IEEE Trans. Antennas Propag. 2017, 65, 2282–2288. [Google Scholar] [CrossRef]
- Dey, A.; Guldiken, R.; Mumcu, G. Microfluidically reconfigured wideband frequency-tunable liquid-metal monopole antenna. IEEE Trans. Antennas Propag. 2016, 64, 2572–2576. [Google Scholar] [CrossRef]
- Kelley, M.; Koo, C.; Mcquilken, H.; Lawrence, B.; Li, S.; Han, A.; Huff, G. Frequency reconfigurable patch antenna using liquid metal as switching mechanism. Electron. Lett. 2013, 49, 1370–1371. [Google Scholar] [CrossRef]
- Mazlouman, S.J.; Jiang, X.J.; Mahanfar, A.N.; Menon, C.; Vaughan, R.G. A Reconfigurable Patch Antenna Using Liquid Metal Embedded in a Silicone Substrate. IEEE Trans. Antennas Propag. 2011, 59, 4406–4412. [Google Scholar] [CrossRef]
- Zhang, G.B.; Gough, R.C.; Moorefield, M.R.; Cho, K.J.; Ohta, A.T.; Shiroma, W.A. A Liquid-Metal Polarization-Pattern Reconfigurable Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 50–53. [Google Scholar] [CrossRef]
- Rodrigo, D.; Jofre, L.; Cetiner, B.A. Circular beam-steering reconfigurable antenna with liquid metal parasitics. IEEE Trans. Antennas Propag. 2012, 60, 1796–1802. [Google Scholar] [CrossRef]
- Bai, X.; Su, M.; Liu, Y.N.; Wu, Y.L. Wideband Pattern-Reconfigurable Cone Antenna Employing Liquid-Metal Reflectors. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 916–919. [Google Scholar] [CrossRef]
- Bharambe, V.T.; Ma, J.; Dickey, M.D.; Adams, J.J. Planar, Multifunctional 3D Printed Antennas Using Liquid Metal Parasitics. IEEE Acess 2019, 7, 134245–134255. [Google Scholar] [CrossRef]
- Wang, M.; Khan, M.R.; Dickey, M.D.; Adams, J.J. A Compound Frequency and Polarization- Reconfigurable Crossed Dipole Using Multidirectional Spreading of Liquid Metal. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 79–82. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H.; Kelly, J. A Polarization Reconfigurable Glass Dielectric Resonator Antenna Using Liquid Metal. IEEE Trans. Antennas Propag. 2019, 67, 3427–3432. [Google Scholar] [CrossRef]
- Alqurashi, K.Y.; Kelly, J.R.; Wang, Z.P.; Crean, C.; Mittra, R.; Khalily, M.; Gao, Y. Liquid Metal Bandwidth-Reconfigurable Antenna. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 218–222. [Google Scholar] [CrossRef]
- Song, L.N.; Gao, W.R.; Chui, C.O.; Rahmat-Samii, Y. Wideband Frequency Reconfigurable Patch Antenna With Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Morishita, A.M.; Kitamura, C.K.Y.; Ohta, A.T.; Shiroma, W.A. A Liquid Metal Monopole Array With Tunable Frequency, Gain, and Beam Steering. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1388–1391. [Google Scholar] [CrossRef]
- Alqurashi, K.Y.; Crean, C.; Filgueiras, H.R.D.; Da Costa, I.F.; Cerqueira, S.A.; Xiao, P.; Chen, Z.; Wong, H.; Kelly, J.R. Millimeter Wave Beam Steerable/Reconfigurable Liquid Metal Array Antenna. In Proceedings of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des, India, 10–14 September 2018; pp. 758–761. [Google Scholar]
- Wang, C.; Yeo, J.C.; Chu, H.; Lim, C.T.; Guo, Y.X. Design of a Reconfigurable Patch Antenna Using the Movement of Liquid Metal. IEEE Antennas Wirel Propag. Lett. 2018, 17, 974–977. [Google Scholar] [CrossRef]
- Mazlouman, S.J.; Mahanfar, A.; Menon, C.; Vaughan, R.G. Reconfigurable Axial-Mode Helix Antennas Using Shape Memmory Alloys. IEEE Trans. Antennas Propag. 2011, 59, 1070–1077. [Google Scholar] [CrossRef]
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
---|---|---|---|---|---|---|---|
6 | 10 | 1.5 | 35 | 4 | 51 | 16 | 1 |
R3 | R4 | R5 | R6 | R7 | H3 | H4 | H5 | H6 |
---|---|---|---|---|---|---|---|---|
19 | 3 | 4 | 17 | 18 | 10 | 4 | 3 | 10 |
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 |
45 | 19 | 19 | 3 | 4 | 17 | 18 | 1 | 3 |
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | H1 |
6 | 10 | 1.5 | 35 | 4 | 51 | 16 | 1 | 10 |
H2 | H3 | H4 | H5 | H6 | r1 | r2 | α1 | α2 |
10 | 10 | 4 | 3 | 10 | 6 | 2 | 20° | 17° |
States | Bandwidth (%) | Gain (dBi/dBic) | Frequency (GHz) | Applications | |
---|---|---|---|---|---|
|S11| < −10 dB | AR < 3 dB | ||||
State-I (RHCP) | 44.7 | 43 | 8.41 | 1.575 | GNSS |
State-II (O-LP) | 41.7 | - | 4.52 | 2.4 | Wireless communication system |
State-III (−15°CP) | 30.4 | 4.7 | 2.57 | 2.4 | RFID system |
State-IV (18°CP) | 28.1 | 4.6 | 2.56 | 2.4 | RFID system |
State-V (O-LHCP) | 10.8 | 3.3 | 1.98 | 2.4 | RFID system |
Reference | States | Bandwidth (%) | Gain (dBi/dBic) | Beam Steering Number | Frequency (GHz) | |
---|---|---|---|---|---|---|
|S11| < −10 dB | AR < 3 dB | |||||
[24] | O-LP | 45.5 | - | 4.2 | - | 2.2 |
LP | 45.5 | - | 6 | 21 | 2.2 | |
[27] | +45° LP | 18.0 | - | 6.2 | - | 2.4 |
−45° LP | 20.0 | - | 6.2 | - | 2.4 | |
90° LP | 23.2 | - | 6.2 | - | 2.4 | |
[28] | LP | 1.8 | - | 7.0 | - | 7.47 |
LP | 83 | - | 5.6 | - | 7.47 | |
[32] | LHCP | 33.6 | 3.06 | 7.25 | - | 2.45 |
RHCP | 36.3 | 4.08 | 7.33 | - | 2.45 | |
LP | 23.2 | - | 7.24 | - | 2.45 | |
This work | RHCP | 44.7 | 43 | 8.41 | - | 1.575 |
O-LP | 41.7 | - | 4.52 | - | 2.4 | |
−15° CP | 30.4 | 4.7 | 2.57 | 2 | 2.4 | |
18° CP | 28.1 | 4.6 | 2.56 | 2.4 | ||
O-LHCP | 10.8 | 3.3 | 1.98 | - | 2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Fang, S.; Liu, H.; Wang, Z.; Shao, T. A Function Reconfigurable Antenna Based on Liquid Metal. Electronics 2020, 9, 873. https://doi.org/10.3390/electronics9050873
Zhou Y, Fang S, Liu H, Wang Z, Shao T. A Function Reconfigurable Antenna Based on Liquid Metal. Electronics. 2020; 9(5):873. https://doi.org/10.3390/electronics9050873
Chicago/Turabian StyleZhou, Yun, Shaojun Fang, Hongmei Liu, Zhongbao Wang, and Te Shao. 2020. "A Function Reconfigurable Antenna Based on Liquid Metal" Electronics 9, no. 5: 873. https://doi.org/10.3390/electronics9050873
APA StyleZhou, Y., Fang, S., Liu, H., Wang, Z., & Shao, T. (2020). A Function Reconfigurable Antenna Based on Liquid Metal. Electronics, 9(5), 873. https://doi.org/10.3390/electronics9050873