Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of the CQDs
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
3.1. CQDs and Hybrid Nanolayer Characterization
3.2. Field-Effect Characteristics of the OFETM Devices
3.3. Electrical Memory Characteristics of OFETM
3.4. Retention Characteristics of Device A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, L.; Mao, J.; Ren, Y.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials. Small 2018, 14, 1703126. [Google Scholar] [CrossRef] [PubMed]
- Au-Duong, A.N.; Kuo, C.C.; Chiu, Y.C. Self-assembled oligosaccharide-based block copolymers as chargestorage materials for memory devices. Polym. J. 2018, 50. [Google Scholar]
- Wu, C.; Wang, W.; Song, J. Solution Processed Top-gate High-Performance Organic Transistor Nonvolatile Memory with Separated Molecular Microdomains Floating-Gate. IEEE Electron Dev. Lett. 2017, 38, 641. [Google Scholar] [CrossRef]
- Wang, W.; Han, J.; Ying, J.; Xie, W. MoO3 Modification Layer to Enhance Performance of Pentacene-OTFTs With Various Low-Cost Metals as Source/Drain Electrodes. IEEE. T. Electron. Dev. 2014, 61, 3507. [Google Scholar] [CrossRef]
- Han, J.; Wang, W.; Ying, J.; Xie, W. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory. Appl. Phys. Lett. 2014, 104, 013302. [Google Scholar] [CrossRef]
- Guo, Y.; Di, C.; Ye, S.; Sun, X.; Zheng, J.; Wen, Y.; Wu, W.; Yu, G.; Liu, Y. Multibit Storage of Organic Thin-Film Field-Effect Transistors. Adv. Mater. 2009, 21, 1954. [Google Scholar] [CrossRef]
- Wang, K.; Ling, H.; Bao, Y.; Yang, M.; Yang, Y.; Hussain, M.; Wang, H.; Zhang, L.; Xie, L.; Yi, M.; et al. A Centimeter-Scale Inorganic Nanoparticle Superlattice Monolayer with Non-Close-Packing and its High Performance in Memory Devices. Adv. Mater. 2018, 30, 1800595. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kusuma, D.Y.; Lee, P.S.; Srinivasan, M.P. Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Mater. Lett. 2012, 68, 287. [Google Scholar] [CrossRef]
- Haik, M.Y.; Ayesh, A.I.; Abdulrehman, T.; Haik, Y. Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements. Mater. Lett. 2014, 124, 67. [Google Scholar] [CrossRef]
- Shih, C.C.; Chiu, Y.C.; Lee, W.Y.; Chen, J.Y.; Chen, W.C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25, 1511. [Google Scholar] [CrossRef]
- Ji, Y.; Kim, J.; Cha, A.N.; Lee, S.A.; Lee, M.W.; Suh, J.S.; Bae, S.; Moon, B.J.; Lee, S.H.; Lee, D.S.; et al. Graphene quantum dots as a highly efficient solution-processed charge trapping medium for organic nano-floating gate memory. Nanotechnology 2016, 27, 145204. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Lu, C.; Liu, C.L.; Chen, W.C. Single-Crystal C60 Needle/CuPc Nanoparticle Double Floating-Gate for Low-Voltage Organic Transistors Based Non-Volatile Memory Devices. Adv. Mater. 2015, 27, 27. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Kim, Y.A.; Yun, J.M.; Khim, D.; Kim, J.; Noh, Y.Y.; Baeg, K.J.; Kim, D.Y. Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 2014, 6, 12315. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; He, W.; Cao, R.; Wei, X.; Uemura, S.; Kamata, T.; Nakamura, K.; Ding, C.; Liu, X.; Kobayashi, N. Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules 2020, 25, 499. [Google Scholar] [CrossRef] [Green Version]
- Bae, I.; Kang, S.J.; Park, Y.J.; Furukawa, T.; Park, C. Organicferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications. Curr. Appl. Phys. 2010, 10, e54. [Google Scholar] [CrossRef]
- Xu, M.; Guo, S.; Xiang, L.; Xu, T.; Xie, W.; Wang, W. High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer. IEEE T. Electron. Dev. 2018, 65, 1113. [Google Scholar] [CrossRef]
- Chou, Y.H.; Chang, H.C.; Liu, C.L.; Chen, W.C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 2015, 6, 341. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Ghim, J.; Lim, B.; Kim, D.Y. Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. Adv. Funct. Mater. 2008, 18, 3678. [Google Scholar] [CrossRef]
- Dao, T.T.; Matsushima, T.; Murata, H. Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer. Org. Electron. 2012, 13, 2709. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Ghim, J.; Kang, S.J.; Lee, H.; Kim, D.Y. Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. Adv. Mater. 2006, 18, 3179. [Google Scholar] [CrossRef]
- Baeg, K.J.; Khim, D.; Kim, D.Y.; Jung, S.W.; Koo, J.B.; Noh, Y.Y. Organic Nano-Floating-Gate Memory with Polymer: [6,6]-Phenyl-C61 Butyric Acid Methyl Ester Composite Films. J. Appl. Phys. 2010, 49, 05EB01. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2014, 44, 362. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Li, H.; Zheng, B.; Chang, F.; Lei, Q.; Han, G.; Song, Y.; Liu, S.; Wei, Y. Modulation effect of carbon quantum dots in organic electroluminescent devices. Org. Electron. 2017, 51, 314. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.H.; She, X.J.; Sun, Q.J.; Gao, X.; Wang, S.D. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate. Appl. Phys. Lett. 2014, 105, 163302. [Google Scholar] [CrossRef]
- Sarkar, K.J.; Pal, B.; Banerji, P. Graphene Oxide as a Dielectric and Charge Trap Element in Pentacene-Based Organic Thin-Film Transistors for Nonvolatile Memory. ACS Omega 2019, 4, 4312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.T.; Wang, F.X.; Li, Y.M.; Guo, X.X.; Yang, J.H. Organic field-effect transistor floating-gate memory devices using polysilicon as charge trapping layer. Chin. Phys. B 2019, 28, 086801. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, F.; Su, Y.; Lvov, Y.M.; Varahramyan, K. Memory Effect of a Polymer Thin-Film Transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE T Nanotechnol 2006, 5, 379. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Guo, X.; Yin, J.; Yang, J. Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics 2020, 9, 753. https://doi.org/10.3390/electronics9050753
Zhang W, Guo X, Yin J, Yang J. Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics. 2020; 9(5):753. https://doi.org/10.3390/electronics9050753
Chicago/Turabian StyleZhang, Wenting, Xiaoxing Guo, Jinchao Yin, and Jianhong Yang. 2020. "Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer" Electronics 9, no. 5: 753. https://doi.org/10.3390/electronics9050753
APA StyleZhang, W., Guo, X., Yin, J., & Yang, J. (2020). Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics, 9(5), 753. https://doi.org/10.3390/electronics9050753