Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of the CQDs
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
3.1. CQDs and Hybrid Nanolayer Characterization
3.2. Field-Effect Characteristics of the OFETM Devices
3.3. Electrical Memory Characteristics of OFETM
3.4. Retention Characteristics of Device A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, L.; Mao, J.; Ren, Y.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials. Small 2018, 14, 1703126. [Google Scholar] [CrossRef] [PubMed]
- Au-Duong, A.N.; Kuo, C.C.; Chiu, Y.C. Self-assembled oligosaccharide-based block copolymers as chargestorage materials for memory devices. Polym. J. 2018, 50. [Google Scholar]
- Wu, C.; Wang, W.; Song, J. Solution Processed Top-gate High-Performance Organic Transistor Nonvolatile Memory with Separated Molecular Microdomains Floating-Gate. IEEE Electron Dev. Lett. 2017, 38, 641. [Google Scholar] [CrossRef]
- Wang, W.; Han, J.; Ying, J.; Xie, W. MoO3 Modification Layer to Enhance Performance of Pentacene-OTFTs With Various Low-Cost Metals as Source/Drain Electrodes. IEEE. T. Electron. Dev. 2014, 61, 3507. [Google Scholar] [CrossRef]
- Han, J.; Wang, W.; Ying, J.; Xie, W. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory. Appl. Phys. Lett. 2014, 104, 013302. [Google Scholar] [CrossRef]
- Guo, Y.; Di, C.; Ye, S.; Sun, X.; Zheng, J.; Wen, Y.; Wu, W.; Yu, G.; Liu, Y. Multibit Storage of Organic Thin-Film Field-Effect Transistors. Adv. Mater. 2009, 21, 1954. [Google Scholar] [CrossRef]
- Wang, K.; Ling, H.; Bao, Y.; Yang, M.; Yang, Y.; Hussain, M.; Wang, H.; Zhang, L.; Xie, L.; Yi, M.; et al. A Centimeter-Scale Inorganic Nanoparticle Superlattice Monolayer with Non-Close-Packing and its High Performance in Memory Devices. Adv. Mater. 2018, 30, 1800595. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kusuma, D.Y.; Lee, P.S.; Srinivasan, M.P. Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Mater. Lett. 2012, 68, 287. [Google Scholar] [CrossRef]
- Haik, M.Y.; Ayesh, A.I.; Abdulrehman, T.; Haik, Y. Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements. Mater. Lett. 2014, 124, 67. [Google Scholar] [CrossRef]
- Shih, C.C.; Chiu, Y.C.; Lee, W.Y.; Chen, J.Y.; Chen, W.C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25, 1511. [Google Scholar] [CrossRef]
- Ji, Y.; Kim, J.; Cha, A.N.; Lee, S.A.; Lee, M.W.; Suh, J.S.; Bae, S.; Moon, B.J.; Lee, S.H.; Lee, D.S.; et al. Graphene quantum dots as a highly efficient solution-processed charge trapping medium for organic nano-floating gate memory. Nanotechnology 2016, 27, 145204. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Lu, C.; Liu, C.L.; Chen, W.C. Single-Crystal C60 Needle/CuPc Nanoparticle Double Floating-Gate for Low-Voltage Organic Transistors Based Non-Volatile Memory Devices. Adv. Mater. 2015, 27, 27. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Kim, Y.A.; Yun, J.M.; Khim, D.; Kim, J.; Noh, Y.Y.; Baeg, K.J.; Kim, D.Y. Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 2014, 6, 12315. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; He, W.; Cao, R.; Wei, X.; Uemura, S.; Kamata, T.; Nakamura, K.; Ding, C.; Liu, X.; Kobayashi, N. Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules 2020, 25, 499. [Google Scholar] [CrossRef]
- Bae, I.; Kang, S.J.; Park, Y.J.; Furukawa, T.; Park, C. Organicferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications. Curr. Appl. Phys. 2010, 10, e54. [Google Scholar] [CrossRef]
- Xu, M.; Guo, S.; Xiang, L.; Xu, T.; Xie, W.; Wang, W. High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer. IEEE T. Electron. Dev. 2018, 65, 1113. [Google Scholar] [CrossRef]
- Chou, Y.H.; Chang, H.C.; Liu, C.L.; Chen, W.C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 2015, 6, 341. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Ghim, J.; Lim, B.; Kim, D.Y. Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. Adv. Funct. Mater. 2008, 18, 3678. [Google Scholar] [CrossRef]
- Dao, T.T.; Matsushima, T.; Murata, H. Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer. Org. Electron. 2012, 13, 2709. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Ghim, J.; Kang, S.J.; Lee, H.; Kim, D.Y. Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. Adv. Mater. 2006, 18, 3179. [Google Scholar] [CrossRef]
- Baeg, K.J.; Khim, D.; Kim, D.Y.; Jung, S.W.; Koo, J.B.; Noh, Y.Y. Organic Nano-Floating-Gate Memory with Polymer: [6,6]-Phenyl-C61 Butyric Acid Methyl Ester Composite Films. J. Appl. Phys. 2010, 49, 05EB01. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2014, 44, 362. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Li, H.; Zheng, B.; Chang, F.; Lei, Q.; Han, G.; Song, Y.; Liu, S.; Wei, Y. Modulation effect of carbon quantum dots in organic electroluminescent devices. Org. Electron. 2017, 51, 314. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.H.; She, X.J.; Sun, Q.J.; Gao, X.; Wang, S.D. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate. Appl. Phys. Lett. 2014, 105, 163302. [Google Scholar] [CrossRef]
- Sarkar, K.J.; Pal, B.; Banerji, P. Graphene Oxide as a Dielectric and Charge Trap Element in Pentacene-Based Organic Thin-Film Transistors for Nonvolatile Memory. ACS Omega 2019, 4, 4312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.T.; Wang, F.X.; Li, Y.M.; Guo, X.X.; Yang, J.H. Organic field-effect transistor floating-gate memory devices using polysilicon as charge trapping layer. Chin. Phys. B 2019, 28, 086801. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, F.; Su, Y.; Lvov, Y.M.; Varahramyan, K. Memory Effect of a Polymer Thin-Film Transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE T Nanotechnol 2006, 5, 379. [Google Scholar]







© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Guo, X.; Yin, J.; Yang, J. Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics 2020, 9, 753. https://doi.org/10.3390/electronics9050753
Zhang W, Guo X, Yin J, Yang J. Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics. 2020; 9(5):753. https://doi.org/10.3390/electronics9050753
Chicago/Turabian StyleZhang, Wenting, Xiaoxing Guo, Jinchao Yin, and Jianhong Yang. 2020. "Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer" Electronics 9, no. 5: 753. https://doi.org/10.3390/electronics9050753
APA StyleZhang, W., Guo, X., Yin, J., & Yang, J. (2020). Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics, 9(5), 753. https://doi.org/10.3390/electronics9050753

