One Step Greener: Reducing 5G and Beyond Networks’ Carbon Footprint by 2-Tiering Energy Efficiency with CO2 Offsetting
Abstract
:1. Introduction
- Capacity maximization;
- Resource efficiency maximization, particularly spectrally;
- Cost effectiveness and reduction;
- Energy consumption minimization;
- Carbon emissions’ minimization.
2. Contribution
3. Organization
4. Energy Efficiency in 5G and Beyond
4.1. RAN Edge and EE Methods
4.2. Mobile Device Edge and EE Methods
4.3. Overall EE Contribution for CF Reduction
5. Carbon Sequestration and Storage
5.1. Geological CSS
5.2. Ocenan CSS
5.3. Biotic CSS
6. Energy Consumption for RAN and Mobile Edges
6.1. RAN Edge Power Consumption
6.2. Mobile Edge Power Consumption
6.3. Overall Network Consumption
7. Carbon Sequestration Estimation
Methodology and Assumptions
- BE will be considered solely because it is the species that can sequester most CO2 not only in the first five years but also in long-term, as depicted in Figure 3;
- Each hectare has approximately 6700 trees considering a tree spacing of 1.2 m;
- All the 6700 BE trees have the ability to sequester 400,000 kgCO2-e/yr per hectare;
- One single BE tree, considering the uniformity previously referred to, can sequester approximately 60 kgCO2-e/yr.
8. Results and Discussion
8.1. Individual Analysis
- One single BE tree can offset in one year an amount of CF equivalent to:
- ○
- The yearly CF of four femtocells or;
- ○
- The yearly CF of one smartphone.
- After 5 years that single BE tree is able to offset the equivalent to approximately 300 kgCO2-e during that year, an amount equivalent to:
- ○
- The yearly CF of 22 femtocells or;
- ○
- The yearly CF of eight smartphones.
8.2. 5G NR Deployment Scenario
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siddiqi, M.A.; Yu, H.; Joung, J. 5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issues with IoT Devices. Electronics 2019, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- 3GPP TR 21.915, Summary of Rel-15 Work Items V15.0.0, Out. 2019. Available online: https://www.etsi.org/deliver/etsi_tr/121900_121999/121915/15.00.00_60/tr_121915v150000p.pdf (accessed on 5 March 2020).
- 3GPP TR 21.916, Summary of Rel-16 Work Items V16.0.0. September 2019. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493 (accessed on 5 March 2020).
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 28 December 2019).
- The European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_pt (accessed on 28 December 2019).
- Mitrović, M.; Malone, A. Carbon capture and storage (CCS) demonstration projects in Canada. Energy Procedia 2011, 4, 5685–5691. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Zeng, N. 2014 Global Carbon Budget. Earth Syst. Sci. Data 2014, 7, 47–85. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, L.; Sebastião, P.; Souto, N.; Correia, A. 5G Mobile Challenges: A Feasibility Study on Achieving Carbon Neutrality. In Proceedings of the IEEE International Conference on Telecommunications-ICT, Thessaloniki, Greece, 1–8 May 2016; Volume 1. [Google Scholar]
- Cisco Annual Internet Report (2018–2023), White Paper. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html (accessed on 5 March 2020).
- Mills, M.P. The Cloud Begins with Coal: Big Data, Big Networks, Big Infrastructure, and Big Power, Digital Power Group. 2013. Available online: https://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf (accessed on 5 March 2020).
- Andrae, A.S.; Edler, T. On global electricity usage of communication technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef] [Green Version]
- Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Fehske, A. How much energy is needed to run a wireless network? IEEE Wirel. Commun. 2011, 18, 40–49. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, N.; Chu, X.; Long, K.; Aghvami, A.H.; Leung, V.C. Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges. IEEE Commun. Mag. 2017, 55, 138–145. [Google Scholar] [CrossRef]
- Sohul, M.M.; Yao, M.; Ma, X.; Imana, E.Y.; Marojevic, V.; Reed, J.H. Next Generation Public Safety Networks: A spectrum sharing approach. IEEE Commun. Mag. 2016, 54, 30–36. [Google Scholar] [CrossRef]
- Sohul, M.M.; Yao, M.; Yang, T.; Reed, J.H. Spectrum access system for the citizen broadband radio service. IEEE Commun. Mag. 2015, 53, 18–25. [Google Scholar] [CrossRef]
- Masoudi, M.; Khafagy, M.G.; Conte, A.; El-Amine, A.; Françoise, B.; Nadjahi, C.; Bodéré, D. Green Mobile Networks for 5G and Beyond. IEEE Access 2019, 7, 107270–107299. [Google Scholar] [CrossRef]
- Buzzi, S.; Chih-Lin, I.; Klein, T.E.; Poor, H.V.; Yang, C.; Zappone, A. A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead. IEEE J. Sel. Areas Commun. 2016, 34, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, R.; Nijsure, Y.; Kaddoum, G.; Hassan, N.U.; Yuen, C. Energy Efficiency Tradeoff Mechanism Towards Wireless Green Communication: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 686–705. [Google Scholar] [CrossRef] [Green Version]
- Davaslioglu, K.; Ayanoglu, E. Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks. IEEE Commun. Surv. Tutor. 2014, 16, 2065–2091. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog computing-based radio access networks: Issues and challenges. IEEE Netw. 2016, 30, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Sun, Y.; Li, X.; Mao, Z.; Wang, C. Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues. IEEE Commun. Surv. Tutor. 2016, 18, 2282–2308. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, M. Software-Defined Network Function Virtualization: A Survey. IEEE Access 2015, 3, 2542–2553. [Google Scholar]
- Fundation, O.N. Software-Defined Networking: The New Norm for Networks. ONF White Pap. 2012, 2, 2–6. [Google Scholar]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Jiang, H.; Yi, S.; Wu, L.; Leung, H.; Wang, Y.; Zhou, X.; Yang, L. Data-Driven Cell Zooming for Large-Scale Mobile Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 156–168. [Google Scholar] [CrossRef]
- Han, F.; Zhao, S.; Zhang, L.; Wu, J. Survey of Strategies for Switching Off Base Stations in Heterogeneous Networks for Greener 5G Systems. IEEE Access 2016, 4, 4959–4973. [Google Scholar] [CrossRef]
- Yu, N.; Miao, Y.; Mu, L.; Du, H.; Huang, H.; Jia, X. Minimizing Energy Cost by Dynamic Switching ON/OFF Base Stations in Cellular Networks. IEEE Trans. Wirel. Commun. 2016, 15, 7457–7469. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, J.; Li, X. Energy-efficient base station control with dynamic clustering in cellular network. In Proceedings of the IEEE International Conference on Communications and Networking (CHINACOM), Guilin, China, 14–16 August 2013; p. 384. [Google Scholar]
- Samarakoon, S.; Bennis, M.; Saad, W.; Latva-aho, M. Dynamic Clustering and ON/OFF Strategies for Wireless Small Cell Networks. IEEE Trans. Wirel. Commun. 2016, 15, 2164–2178. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, J.; Chu, X. An Energy Saving Small Cell Sleeping Mechanism with Cell Expansion in Heterogeneous Networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring), Porto, Portugal, 15–18 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ghazzai, H.; Farooq, M.J.; Alsharoa, A.; Yaacoub, E.; Kadri, A.; Alouini, M.-S. Green Networking in Cellular HetNets: A Unified Radio Resource Management Framework With Base Station ON/OFF Switching. IEEE Trans. Veh. Technol. 2017, 66, 5879–5893. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Gong, P. A QoE-orientated base station sleeping strategy for multi-services in cellular networks. In Proceedings of the International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Bhaumik, S.; Narlikar, G.; Chattopadhyay, S.; Kanugovi, S. Breathe to stay cool: Adjusting cell sizes to reduce energy consumption. In Proceedings of the First ACM SIGCOMM Workshop on Green Networking, Hangzhou, China, 18–20 December 2010. [Google Scholar]
- Manimozhi, K.; Vijayalakshmi, V. Optimized energy-aware context based switching relay scheme for HetNets. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1261–1265. [Google Scholar]
- Oh, E.; Krishnamachari, B.; Liu, X.; Niu, Z. Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Commun. Mag. 2011, 49, 56–61. [Google Scholar] [CrossRef]
- Son, K.; Kim, H.; Yi, Y.; Krishnamachari, B. Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE J. Sel. Areas Commun. 2011, 29, 1525–1536. [Google Scholar] [CrossRef]
- Han, T.; Ansari, N. On greening cellular networks via multicell cooperation. IEEE Wirel. Commun. 2013, 20, 82–89. [Google Scholar] [CrossRef]
- Yigitel, M.A.; Incel, O.D.; Ersoy, C. Qos vs. energy: A traffic-aware topology management scheme for green heterogeneous networks. Comput. Netw. 2015, 78, 130–139. [Google Scholar] [CrossRef]
- Kwak, J.; Son, K.; Yi, Y.; Chong, S. Impact of spatio-temporal power sharing policies on cellular network greening. In Proceedings of the 2011 International Symposium of Modeling and Optimization of Mobile, Ad Hoc, and Wireless Networks, Princeton, NJ, USA, 9–13 May 2011. [Google Scholar]
- Luo, S.; Zhang, R.; Lim, T.J. Optimal power and range adaptation for green broadcasting. IEEE Trans. Wirel. Commun. 2013, 12, 4592–4603. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Huang, Y.; You, L.; Xiong, J.; Li, J.; Gao, X. Energy Efficiency Optimization for Massive MIMO Non-Orthogonal Unicast and Multicast Transmission with Statistical CSI. Electronics 2019, 8, 857. [Google Scholar] [CrossRef] [Green Version]
- Ismaiil, K.A.H.; Assaf, B.; Ghantous, M.; Nahas, M. Reducing power Consumption of cellular networks by using various cell types and cell zooming. In Proceedings of the International Conference on e-Technologies and Networks for Development (ICeND), Beirut, Lebanon, 29 April–1 May 2014; pp. 33–38. [Google Scholar]
- Niu, Z.; Wu, Y.; Gong, J.; Yang, Z. Cell zooming for cost-efficient green cellular networks. IEEE Commun. Mag. 2010, 48, 74–79. [Google Scholar] [CrossRef]
- Le, L.B. QoS-aware BS switching and cell zooming design for OFDMA green cellular networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 1544–1549. [Google Scholar]
- Hu, Z.; Wei, Y.; Wang, X.; Song, M. Green relay station assisted cell zooming scheme for cellular networks. In Proceedings of the International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 2030–2035. [Google Scholar]
- Zhu, Y.; Kang, T.; Zhang, T.; Zeng, Z. QoS-aware user association based on cell zooming for energy efficiency in cellular networks. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), London, UK, 8–9 September 2013; pp. 6–10. [Google Scholar]
- You, Y.; Sheng, J.; Zhu, Q.; Zhu, C.; Ma, D. A novel cell zooming strategy towards energy efficient based on load balancing in random heterogeneous networks. In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; pp. 522–527. [Google Scholar]
- Onur, E.; Durmus, Y.; Niemegeers, I. Cooperative density estimation in random wireless ad hoc networks. IEEE Commun. Lett. 2012, 16, 331–333. [Google Scholar] [CrossRef]
- Eroglu, A.; Onur, E.; Oguztüzün, H. Estimating density of wireless networks in practice. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 1476–1480. [Google Scholar]
- Yaman, O.; Eroglu, A.; Onur, E. Density-aware cell zooming. In Proceedings of the 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 19–22 February 2018; pp. 1–8. [Google Scholar]
- Allal, I.; Mongazon-Cazavet, B.; Al Agha, K.; Senouci, S.M.; Gourhant, Y. A green small cells deployment in 5G — Switch ON/OFF via IoT networks & energy efficient mesh backhauling. In Proceedings of the 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 12–16 June 2017; pp. 1–2. [Google Scholar]
- Nakamura, M.; Takeno, K. Green Base Station Using Robust Solar System and High-Performance Lithium ion battery for Next Generation Wireless Network (5G) and against Mega Disaster. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 201–206. [Google Scholar]
- Dutta, U.K.; Razzaque, M.A.; Al-Wadud, M.A.; Islam, M.S.; Hossain, M.S.; Gupta, B.B. Self-Adaptive Scheduling of Base Transceiver Stations in Green 5G Networks. IEEE Access 2018, 6, 7958–7969. [Google Scholar] [CrossRef]
- Kour, H.; Jha, R.K. Power Optimization using Spectrum Sharing for 5G Wireless Networks. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 395–398. [Google Scholar]
- Mi, J.; Wang, K.; Li, P.; Guo, S.; Sun, Y. Software-Defined Green 5G System for Big Data. IEEE Commun. Mag. 2018, 56, 116–123. [Google Scholar] [CrossRef]
- Mowla, M.M.; Ahmad, I.; Habibi, D.; Phung, Q.V. A Green Communication Model for 5G Systems. IEEE Trans. Green Commun. Netw. 2017, 1, 264–280. [Google Scholar] [CrossRef]
- Mowla, M.M.; Ahmad, I.; Habibi, D.; Phung, Q.V. Energy Efficient Backhauling for 5G Small Cell Networks. IEEE Trans. Sustain. Comput. 2019, 4, 279–292. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, C.; Chen, W.; Tao, X.; Sun, Y. Adaptive Cell Zooming and Sleeping for Green Heterogeneous Ultradense Networks. IEEE Trans. Veh. Technol. 2018, 67, 1612–1621. [Google Scholar] [CrossRef]
- Memon, M.L.; Maheshwari, M.K.; Saxena, N.; Roy, A.; Shin, D.R. Artificial Intelligence-Based Discontinuous Reception for Energy Saving in 5G Networks. Electronics 2019, 8, 778. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.S.; Lozano, A.; Soong, A.A.C.K.; Zhang, J.J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.; Carter, J. A lightweight secure cyber foraging infrastructure for resource-constrained devices. In Proceedings of the Sixth IEEE Workshop on Mobile Computing Systems and Applications, Windermere, Cumbria, UK, 3 December 2004; pp. 186–195. [Google Scholar]
- Sharifi, M.; Kafaie, S.; Kashefi, O. A Survey and Taxonomy of Cyber Foraging of Mobile Devices. IEEE Commun. Surv. Tutor. 2012, 14, 1232–1243. [Google Scholar] [CrossRef]
- Esposito, F.; Cvetkovski, A.; Dargahi, T.; Pan, J. Complete edge function onloading for effective backend-driven cyber foraging. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]
- Esposito, F.; Paganelli, F.; Fantacci, R. A Decomposition-based Architecture for Distributed Cyber-Foraging of Multiple Edge Functions. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 247–251. [Google Scholar]
- Jia, Z. Energy efficiency analysis of cellular downlink transmission with network coding over Rayleigh fading channels. KSII Trans. Internet Info. Sys. 2013, 7, 446–458. [Google Scholar]
- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, White Paper, 2015–2020. February 2016. Available online: https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf (accessed on 5 March 2020).
- Jahid, A.; Shams, A.B.; Hossain, M.F. Green energy driven cellular networks with JT CoMP technique. Phys. Commun. 2018, 28, 58–68. [Google Scholar] [CrossRef]
- Vereecken, W.; Van Heddeghem, W.; Deruyck, M.; Puype, B.; Lannoo, B.; Joseph, W.; Demeester, P. Power consumption in telecommunication networks: Overview and reduction strategies. IEEE Commun. Mag. 2011, 49, 62–69. [Google Scholar] [CrossRef]
- Sedjo, R.; Sohngen, B. Carbon Sequestration in Forests and Soils. Annu. Rev. Resour. Econ. 2012, 4, 127–144. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Friedmann, J. Geological carbon dioxide sequestration. Elem. Int. Mag. Mineral. Geochem. Petrol. 2007, 3, 179–184. [Google Scholar] [CrossRef]
- IPCC–Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage; Special Report; Cambridge University Press: Cambridge, UK, 2005.
- Livermont, E.A.; Koh, Y.; Mlambo, T.; Bhawanin, M.; Zhao, B. Carbon Capture and Storage in Deep Ocean Space for the 21st Century-Guidelines for Implementation in China; University of Southampton: Southampton, UK, 2011. [Google Scholar]
- Shafqat, S.; Kishwer, S.; Qureshi, M.A. Energy-Aware Cloud Architecture for Intense Social Mobile (Device to Device) 5G Communications in Smart City. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 0739–0745. [Google Scholar]
- González, J.; Tejedor-Flores, N.; Pinzón, R. A Bibliographic Review of the Importance of Carbon Dioxide Capture in Mangroves. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama City, Panama, 9–11 October 2019; pp. 126–131. [Google Scholar]
- Raven, J.A.; Karley, A.J. Carbon sequestration: Photosynthesis and subsequent processes. Curr. Biol. J. 2006, 16, R165–R167. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Hessami, A. A study of methods of carbon dioxide capture and sequestration–the sustainability of a photosynthetic bioreactor approach. Energy Convers. Manag. J. 2005, 46, 403–420. [Google Scholar] [CrossRef]
- Chavan, B.L.; Rasal, G.B. Sequestered Carbon Potential and Status of Eucalyptus Tree. Int. J. Appl. Eng. Technol. 2011, 1, 41–47. [Google Scholar]
- Dubal, K.; Ghorpade, P.; Dongare, M.; Patil, S. Carbon Sequestration in the Standing Trees at Campus of Shivaji University, Kolhapur. Int. Sci. J. Nat. Environ. Pollut. Technol. 2013, 12, 725–726. [Google Scholar]
- Unwin, G.L.; Kriedemann, P.E. Principles and Processes of Carbon Sequestration by Trees; Technical Paper; Research and Development Division State Forests of New South Wales: Sydney, Australia, 2000. [Google Scholar]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Mogensen, P.E.; Koivisto, T.; Pedersen, K.I.; Kovacs, I.Z.; Raaf, B.; Pajukoski, K.; Rinne, M.J. LTE-Advanced: The path towards gigabit/s in wireless mobile communications. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009. [Google Scholar]
- Millard, P.; Sommerkorn, M.; Grelet, G. Environmental Change and Carbon Limitation in Trees: A Biochemical, Ecophysiological and Ecosystem Appraisal. New Phytol. J. 2007, 175, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Gorte, R. Carbon Sequestration in Forests; Congressional Research Service Report for Congress; DIANE Publishing: Collingdale, PA, USA, 2009. [Google Scholar]
- Auer, G.; Blume, O.; Giannini, V.; Godor, I.; Imran, M.; Jading, Y.; Katranaras, E.; Olsson, M.; Sabella, D.; Skillermark, P.; et al. EARTH Deliverable D2.3: Energy Efficiency Analysis of the Reference Systems, Areas of Improvements and Target Breakdown, Project Deliverable D2.3. Available online: https://cordis.europa.eu/docs/projects/cnect/3/247733/080/deliverables/001-EARTHWP2D23v2.pdf (accessed on 5 March 2020).
- Sabella, D.; Rapone, D.; Fodrini, M.; Cavdar, C.; Olsson, M.; Frenger, P.; Tombaz, S. Energy Management in Mobile Networks Towards 5G; Springer: Berlin/Heidelberg, Germany, 2016; pp. 397–427. [Google Scholar]
- Yang, X.; Wang, Z.; Wan, X.; Fan, Z. Secure Energy-Efficient Resource Allocation Algorithm of Massive MIMO System with SWIPT. Electronics 2020, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Global e-Sustainability Initiative (GeSI) Strategy, Accenture, #SMARTer2030: ICT Solutions for 21st Century Challenges. Technical Report, Brussels, Belgium. 2015. Available online: http://smarter2030.gesi.org/downloads/Full_report.pdf (accessed on 5 March 2020).
- Carroll, A.; Heiser, G. An analysis of power consumption in a smartphone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Berkeley, CA, USA, 23–25 June 2010; p. 21. [Google Scholar]
- Jensen, A.R.; Lauridsen, M.; Mogensen, P.; Sorensen, T.B.; Jensen, P. LTE UE power consumption model: For system level energy and performance optimization. In Proceedings of the IEEE Vehicular Technology Conference (VTC Fall), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
- Lauridsen, M.; Mogensen, P.; Noël, L. Empirical LTE smartphone power model with DRX operation for system level simulations. In Proceedings of the IEEE Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–6. [Google Scholar]
- Urban, B.; Roth, K.; Singh, M.; Howes, D. Energy Consumption of Consumer Electronics in US Homes in 2017; Final Report to the Consumer Technology Association; Fraunhofer Center for Sustainable Energy Systems: Boston, MA, USA, 2017. [Google Scholar]
- EPRI, Electric Power Research Institute: EPRI Calculates Annual Cost of Charging an iPad at $1.36 2012. Available online: http://www.epri.com/Press-Releases/Pages/EPRI-Calculates-Annual-Cost-of-Charging-an-iPad-at-$1-36.aspx (accessed on 30 December 2019).
- ERICSSON Energy and Carbon Report. 2014. Available online: https://www.ericsson.com/assets/local/about-ericsson/sustainability-and-corporate-responsibility/documents/ericsson-energy-and-carbon-report.pdf (accessed on 2 December 2017).
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- GSMA Report, 2019 Mobile Industry Impact Report: Sustainable Development Goals Climate Action Deep Dive. Available online: https://www.gsma.com/betterfuture/2019sdgimpactreport/wp-content/uploads/2019/09/SDG_Report_2019_ExecSummary_Web_Singles.pdf (accessed on 5 March 2020).
- United Kindgom’s Forestry Commission, Woodland Carbon Code, Technical Report. July 2018. Available online: https://www.woodlandcarboncode.org.uk/about (accessed on 20 December 2019).
- Trees for the Future Foundation. Available online: http://treesftf.force.com/checkout/TFTF_Donation_Certificate_Cls (accessed on 20 December 2019).
Component | Contribution to Overall CO2-e |
---|---|
Mobile Device Manufacturing (MDM) | 30% |
RAN sites’ operation (RSO) | 29% |
Datacenters and data transport (DDT) | 19% |
Mobile device operation (MDO) | 10% |
RAN sites’ manufacturing (RSM) | 4% |
MNO activities (MO) | 8% |
Total (CFTotal) [MtCO2-e] (for 2020/2025) | 235/290 |
Production [%] | Customer Use [%] | Transport [%] | Recycling 100% | Total [kg CO2-e] | Total Customer Use Life Cycle 3Y [kg CO2-e] | Total Customer Use Life Cycle per Year [kgCO2-e] | Total Customer Use per Year [kWh] | |
---|---|---|---|---|---|---|---|---|
iPhone X 64GB | 80 | 17 | 2 | 1% | 79 | 13.43 | 4.48 | 8.9 |
iPhone X 256GB | 93 | 15.81 | 5.27 | 10.5 | ||||
iPhone SE 32GB | 83 | 12 | 4 | 45 | 5.4 | 1.80 | 3.6 | |
Phone SE 128GB | 53 | 6.36 | 2.12 | 4.2 | ||||
iPhone 7 32GB | 78 | 18 | 3 | 56 | 10.08 | 3.36 | 6.7 | |
iPhone 7 128GB | 63 | 11.34 | 3.78 | 7.6 | ||||
iPhone 7 256GB | 75 | 13.5 | 4.50 | 9.0 | ||||
Iphone Plus 7 32GB | 78 | 18 | 3 | 67 | 12.06 | 4.02 | 8.0 | |
Iphone Plus 7 128GB | 74 | 13.32 | 4.44 | 8.9 | ||||
Iphone Plus 7 256GB | 86 | 15.48 | 5.16 | 10.3 | ||||
iPhone SE 32GB | 82 | 14 | 3 | 75 | 10.5 | 3.50 | 7.0 | |
iPhone 6s Plus 32GB | 78 | 18 | 3 | 63 | 11.34 | 3.78 | 7.6 | |
iPhone 6s Plus 128GB | 70 | 12.6 | 4.20 | 8.4 | ||||
iPhone 6s 32GB | 80 | 16 | 3 | 54 | 8.64 | 2.88 | 5.8 | |
iPhone 6s 128GB | 61 | 9.76 | 3.25 | 6.5 | ||||
iPhone 6 | 85 | 11 | 3 | 95 | 10.45 | 3.48 | 7.0 | |
iPhone 6 Plus | 81 | 14 | 4 | 110 | 15.4 | 5.13 | 10.3 |
Parameter | Assumption |
---|---|
Type of Tree | Broadleaf (BL) |
Species | Beech, (BE) Fagus sylvatica (BE) |
Considered spacing (m) | 1.2 |
Yeld Class | 6 |
Thinned or non-thinned | both |
LifeCycle in Analysis | First 5 years |
Growth Rate | Uniform during the lifecycle |
Sequestration Capability | Uniform during the lifecycle |
Sequestation Quantity [tCO2-e] | ~0.4/year |
Parameter | Value |
---|---|
BE sequestration capacity [tCO2-e] per year | ~0.4 |
CON sequestration capacity [tCO2-e] per year | ~0.2 |
Area Considered | 1 hectare |
Tree Spacing | 1.2 m |
Number of Trees per Hectare | ~6700 |
Parameter | Value |
---|---|
Smartphone device [95] | 40 kg/0.040 ton |
MacroCell [8] | 2531 kg/2.351 ton |
FemtoCell [8] | 15 kg/0.015 ton |
Component | Total CF Reduction [CO2-e/yr] | |
---|---|---|
EE—Tier 1 | CSS—Tier 2 | |
Smartphone device (Mobile) | 4 kg | 36 kg |
MacroCell (RAN Edge) | ~253 kg | ~2278 kg |
FemtoCell (RAN Edge) | 1.5 kg | 13.5 kg |
System RCF | Carbon Neutral? | System Expansion | Investment in Biotic CSS [€] |
---|---|---|---|
Nominal RCF | Yes (2nd year) | Macro: 7 Femto: 140 Subscribers: 12,000 | ~600 |
10% Increase in system RCF | Yes (2nd year) | Macro: 8 Femto: 154 Subscribers: 13,200 | 0 |
30% Increase in system RCF | Yes (2nd year) | Macro: 9 Femto: 182 Subscribers: 12,000 | 0 |
50% Increase in system RCF | Yes (2nd year) | Macro: 10 Femto: 210 Subscribers: 15,600 | 0 |
100% Increase in RCF | Yes (3rd year) | Macro: 14 Femto: 280 Subscribers: 36,000 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, L.C.; Sebastião, P.; Souto, N.; Correia, A. One Step Greener: Reducing 5G and Beyond Networks’ Carbon Footprint by 2-Tiering Energy Efficiency with CO2 Offsetting. Electronics 2020, 9, 464. https://doi.org/10.3390/electronics9030464
Gonçalves LC, Sebastião P, Souto N, Correia A. One Step Greener: Reducing 5G and Beyond Networks’ Carbon Footprint by 2-Tiering Energy Efficiency with CO2 Offsetting. Electronics. 2020; 9(3):464. https://doi.org/10.3390/electronics9030464
Chicago/Turabian StyleGonçalves, Luís Carlos, Pedro Sebastião, Nuno Souto, and Américo Correia. 2020. "One Step Greener: Reducing 5G and Beyond Networks’ Carbon Footprint by 2-Tiering Energy Efficiency with CO2 Offsetting" Electronics 9, no. 3: 464. https://doi.org/10.3390/electronics9030464
APA StyleGonçalves, L. C., Sebastião, P., Souto, N., & Correia, A. (2020). One Step Greener: Reducing 5G and Beyond Networks’ Carbon Footprint by 2-Tiering Energy Efficiency with CO2 Offsetting. Electronics, 9(3), 464. https://doi.org/10.3390/electronics9030464