Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering
Abstract
:1. Introduction
2. Multi-Level Fast Multipole Algorithm
3. Proposed Acceleration Method
3.1. Principle of the Proposed Method
3.2. Research on the Drawbacks of Applying K-Means Clustering
4. Numerical Results
4.1. Comparisons between the Previous FMM with K-Means Clustering and the Proposed MLFMA with K-Means Clustering
4.2. Canonical Sphere Target Simulations
4.3. Realistic Stealth Target Simulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ha, J.; Shin, W.; Lee, J.H.; Kim, Y.; Kim, D.; Lee, Y.; Yook, J.G. Effect of plasma area on frequency of monostatic radar cross section reduction. J. Electromagn. Eng. Sci. 2017, 17, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Yun, D.J.; Lee, J.I.; Bae, K.U.; Yoo, J.H.; Kwon, K.I.; Myung, N.H. Improvement in computation time of 3-D scattering center extraction using the shooting and bouncing ray technique. IEEE Trans. Antennas Propagat. 2017, 65, 4191–4199. [Google Scholar] [CrossRef]
- Wu, X.; Jin, Y. Scattering model for electrical-large target employing MLFMA and radar imaging formation. J. Electromagn. Eng. Sci. 2010, 10, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Gibson, W.C. The Method of Moments in Electromagnetics, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007; pp. 209–253. [Google Scholar]
- Rao, S.M.; Wilton, D.R.; Glisson, A.W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat. 1982, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Eibert, T.F.; Hansen, V. On the calculation of potential integrals for linear source distributions on triangular domains. IEEE Trans. Antennas Propagat. 1995, 43, 1499–1502. [Google Scholar] [CrossRef]
- Coifman, R.; Rokhlin, V.; Wandzura, S. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas Propagat. Mag. 1993, 35, 7–12. [Google Scholar] [CrossRef]
- Song, J.M.; Lu, C.C.; Chew, W.C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propagat. 1997, 45, 1488–1493. [Google Scholar] [CrossRef] [Green Version]
- Song, J.M.; Chew, W.C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw. Optic. Technol. Lett. 1995, 10, 14–19. [Google Scholar] [CrossRef]
- Hidayetoglu, M.; Chew, W.C. On computational complexity of the multilevel fast multipole algorithm in various dimensions. In Proceedings of the IEEE International Symposium on Antennas and Propagation (AP-S), Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 1559–1560. [Google Scholar]
- Hesford, A.J.; Chew, W.C. A frequency-domain formulation of the Fréchet derivative to exploit the inherent parallelism of the distorted Born iterative method. Waves Random Complex Media 2006, 16, 495–508. [Google Scholar] [CrossRef]
- Hidayetoglu, M.; Pearson, C.; El Hajj, I.; Gurel, L.; Chew, W.C.; Hwu, W.-M. A fast and massively-parallel inverse solver for multiple-scattering tomographic image reconstruction. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, CA, USA, 21–25 May 2018; pp. 64–74. [Google Scholar]
- Xie, Y.; He, J.; Sullivan, A.; Carin, L. A simple preconditioner for electric-field integral equations. Microw. Opt. Technol. Lett. 2001, 30, 51–54. [Google Scholar] [CrossRef]
- Yun, D.J.; Kim, H.J.; Yang, S.J.; Lee, J.I.; Yang, W.Y.; Myung, N.H. Method of moment using matrix equilibration for stealth aircraft scattering analysis in VHF band. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 1–3. [Google Scholar]
- Barakat, K.; Webb, J. A Clustering Algorithm for Multilevel Fast Multipole Methods. IEEE Trans. Magn. 2004, 40, 1072–1075. [Google Scholar] [CrossRef]
- Marzouk, Y.M.; Ghoniem, A.F. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations. J. Comput. Phys. 2005, 207, 493–528. [Google Scholar] [CrossRef]
- Yun, D.-J.; Jung, I.I.; Jung, H.; Kang, H.; Yang, W.-Y.; Park, I.Y. Improvement in Computation Time of the Finite Multipole Method by Using K-Means Clustering. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1814–1817. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Silverman, R.; Wu, A. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Czink, N.; Cera, P.; Salo, J.; Bonek, E.; Nuutinen, J.-P.; Ylitalo, J. Improving clustering performance using multipath component distance. Electron. Lett. 2006, 42, 33. [Google Scholar] [CrossRef] [Green Version]
- Pakhira, M.K. A linear time-complexity k-means algorithm using cluster shifting. In Proceedings of the IEEE International Conference on Computational Intelligence and Communication Networks (CICN), Bhopal, India, 14–16 November 2014; pp. 1047–1051. [Google Scholar]
Methods | Pre-Processing Time | Scattering Analysis Time for 360-Degree Case |
---|---|---|
Proposed K-means clustering MLFMA | 4.471 s | 26,218.995 s |
Conventional octree MLFMA | 0.776 s | 57,343.523 s |
Methods | Pre-Processing Time | Scattering Analysis Time for Single Direction Case |
---|---|---|
Proposed K-means clustering MLFMA | 15.282 s | 62.407 s |
Conventional octree MLFMA | 2.760 s | 88.619 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, D.-j.; Jung, H.; Kang, H.; Yang, W.-Y.; Seo, D.-W. Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering. Electronics 2020, 9, 1926. https://doi.org/10.3390/electronics9111926
Yun D-j, Jung H, Kang H, Yang W-Y, Seo D-W. Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering. Electronics. 2020; 9(11):1926. https://doi.org/10.3390/electronics9111926
Chicago/Turabian StyleYun, Dal-jae, Haewon Jung, Hoon Kang, Woo-Yong Yang, and Dong-Wook Seo. 2020. "Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering" Electronics 9, no. 11: 1926. https://doi.org/10.3390/electronics9111926
APA StyleYun, D.-j., Jung, H., Kang, H., Yang, W.-Y., & Seo, D.-W. (2020). Acceleration of the Multi-Level Fast Multipole Algorithm Using K-Means Clustering. Electronics, 9(11), 1926. https://doi.org/10.3390/electronics9111926