# Effective Beamforming Technique Amid Optimal Value for Wireless Communication

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Preliminaries

#### 3.1. Single Cell Down Link

#### 3.2. Up Link Transmission

#### 3.3. Down-Link (Forward-Link) Transmission

#### 3.4. Multiple Beam-Forming Techniques

#### 3.5. Power Constraints in Practical System

#### 3.6. Typical Attainable Sum Information Rate

#### 3.7. Scenario for Multiple Antennas (Nt and Kt)

## 4. Data Analysis in Practical System

#### 3D Beam Forming

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Björnson, E.; Bengtsson, M.; Ottersten, B. Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure. IEEE Signal Process Mag.
**2014**, 31, 142–148, abs/1404.0408. [Google Scholar] [CrossRef] [Green Version] - Raychaudhuri, D.; Mandayam, N.B. Frontiers of Wireless and Mobile Communications. Proc. IEEE
**2012**, 100, 824–840. [Google Scholar] [CrossRef] - Cimini, L.J.; Babak, D.; Sollenberger, N.R. Clustered OFDM with transmitter diversity and coding. In Proceedings of the GLOBECOM 96. 1996 IEEE Global Telecommunications Conference, London, UK, 18–28 November 1996; Volume 1, pp. 703–707. [Google Scholar]
- Bahai, A.R.; Saltzberg, B.R. Multi-Carrier Digital Communications: Theory and Applications of Ofdm; Plenum Publishing Co.: New York, NY, USA, 1999. [Google Scholar]
- Grover, A.; Sheetal, A.; Dhasarathan, V. Enhanced performance analysis of a hybrid spectrum sliced-wavelength division multiplexing-mode division multiplexing-orthogonal frequency division multiplexing based radio-over-free space optics. Trans. Emerg. Telecommun. Technol.
**2020**, 31. [Google Scholar] [CrossRef] - Mohammad, R.; Rizwan, M.; Gong, T.; Janjua, K. Analysis of Efficient Beamforming and Power Optimization in Wireless Communication. J. Telecommun. Syst. Manag.
**2018**, 7. [Google Scholar] [CrossRef] - Björnson, E.; Jalden, N.; Bengtsson, M.; Ottersten, B.E. Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission. IEEE Trans. Signal Process.
**2011**, 59, 6086–6101. [Google Scholar] [CrossRef] [Green Version] - Bengtsson, M. Jointly optimal downlink beamforming and base station assignment. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2001, Salt Lake City, UT, USA, 7–11 May 2001; pp. 2961–2964. [Google Scholar]
- Yang, P.; Guo, D.; Yang, H. Massive Access in Multi-cell Wireless Networks Using Reed-Muller Codes. arXiv
**2020**, arXiv:2003.11568. [Google Scholar] - Choi, W.; Andrews, J.G. On spatial multiplexing in cellular MIMO-CDMA systems with linear receivers. In Proceedings of the IEEE International Conference on Communications, ICC 2005, Seoul, Korea, 16–20 May 2005; pp. 2277–2281. [Google Scholar]
- Foschini, G.J.; Gans, M.J. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wirel. Pers. Commun.
**1998**, 6, 311–335. [Google Scholar] [CrossRef] - Ali, E.; Ismail, M.; Nordin, R.; Abdullah, N.F. Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Front. Inf. Technol. Electron. Eng.
**2017**, 18, 753–772. [Google Scholar] [CrossRef] - Hossain, Z.; Habiba, U.; Matin, M.A. Efficient beamforming technique for cognitive radio networks. J. Adv. Inf. Technol.
**2013**, 4, 111–115. [Google Scholar] [CrossRef] - Yang, Y.; Yue, H. Efficient beamforming method for downlink MU-MIMO broadcast channels. AEU-Int. J. Electron. Commun.
**2015**, 69, 636–643. [Google Scholar] [CrossRef] - Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag.
**2012**, 30, 40–60. [Google Scholar] [CrossRef] [Green Version] - Spano, D.; Chatzinotas, S.; Andrenacci, S.; Krause, J.; Ottersten, B. Per-antenna power minimization in symbol-level precoding for the multibeam satellite downlink. Int. J. Satell. Commun. Netw.
**2019**, 37, 15–30. [Google Scholar] [CrossRef] [Green Version] - Jang, S.; Lee, H.; Kang, S.; Oh, T.; Lee, I. Energy Efficient Beamforming for Multi-Cell MISO SWIPT Systems. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Xu, W. Capacity improvement analysis of 3D-beamforming in small cell systems. Sci. China Inf. Sci.
**2018**, 61, 022305. [Google Scholar] [CrossRef] - Razavizadeh, S.M.; Ahn, M.; Lee, I. Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Process. Mag.
**2014**, 31, 94–101. [Google Scholar] [CrossRef] - Khandal, D.; Jain, S. Li-fi (light fidelity): The future technology in wireless communication. Int. J. Inf. Comput. Technol.
**2014**, 4, 1–7. [Google Scholar] - Bjornson, E.; Jorswieck, E. Optimal Resource Allocation in Coordinated Multi-Cell Systems: Matlab Code; Now Foundations and Trends: Norwell, MA, UAS, 2013. [Google Scholar]
- Weiss, T.A.; Jondral, F.K. Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Commun. Mag.
**2004**, 42, S8–S14. [Google Scholar] [CrossRef] - Bengtsson, M.; Ottersten, B. Optimal and Suboptimal Transmit Beamforming; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Liu, Y.F.; Dai, Y.H.; Luo, Z.Q. Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Trans. Signal Process.
**2010**, 59, 1142–1157. [Google Scholar] [CrossRef] - Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Yu, W.; Lan, T. Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process.
**2007**, 55, 2646–2660. [Google Scholar] [CrossRef] [Green Version] - Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Aspects of favorable propagation in massive MIMO. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 76–80. [Google Scholar]
- Lambotharan, S.; Toker, C. Closed-loop space time block coding techniques for OFDM broadband wireless access systems. IEEE Trans. Consum. Electron.
**2005**, 51, 765–769. [Google Scholar] [CrossRef] - Cui, S.; Goldsmith, A.J.; Bahai, A. Energy-constrained modulation optimization. IEEE Trans. Wirel. Commun.
**2005**, 4, 2349–2360. [Google Scholar] - Draz, U.; Ali, T.; Yasin, S.; Waqas, U.; Rafiq, U. Towards Formalism of Link Failure Detection Algorithm for Wireless Sensor and Actor Networks. In Proceedings of the 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 21–22 February 2019; pp. 1–6. [Google Scholar]
- Al-Obiedollah, H.M.; Cumanan, K.; Thiyagalingam, J.; Burr, A.G.; Ding, Z.; Dobre, O.A. Energy efficient beamforming design for MISO non-orthogonal multiple access systems. IEEE Trans. Commun.
**2019**, 67, 4117–4131. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Performance of Transmit MMSE, MRT and ZFBF is low for less antennas N (N = 4) and user function SNR, (signal to noise ratio received at the user end) shows that high SNR limit the interuser interface and transmit MMSE performs best.

**Figure 2.**Performance of Transmit MMSE, MRT and ZFBF increase with antennas N (N = 6), with ZFBF and MRT compensate against average SNR and user function SNR (signal to noise ratio received at the user end) shows that high SNR limit the interuser interface and transmit MMSE performs best.

**Figure 3.**Performance of Transmit MMSE, MRT and ZFBF with antennas N = 25. ZFBF and MRT compensate against average SNR and user function SNR shows that high SNR limit the interuser interface and ZFBF compensate with transmit MMSE and increase with densification of network antennas.

**Figure 4.**Comparative analysis on 15 MHz-bands for 4G technology with antennas height and tower heights in meters, with longitudinal variations for the antennas.

**Figure 5.**The allocation of the resources of the architecture for the reference network data features.

**Figure 6.**The reference signal received power (RSRP) efficiency for our tested scenarios distribution percentage.

**Figure 7.**Radio resource connection (RRC) establishment percentage with the user equipment’s nodes efficiency of the tested architecture with various intervals connectivity ratio.

**Figure 8.**Comparison of effects of azimuth and post-azimuth tilt with respect to tower and antenna heights calculated for the test scenario.

**Figure 9.**Comparison of effects of azimuth and mechanical with post-azimuth and post mechanical tilts for the antenna height from the ground for the test scenario.

**Figure 10.**Signal control analysis with electrical and post-electrical to control the phase of signal and post-mechanical tilt to control the overall segments and coverage overlaps.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qaisar, Z.H.; Irfan, M.; Ali, T.; Ahmad, A.; Ali, G.; Glowacz, A.; Glowacz, W.; Caesarendra, W.; Mashraqi, A.M.; Draz, U.;
et al. Effective Beamforming Technique Amid Optimal Value for Wireless Communication. *Electronics* **2020**, *9*, 1869.
https://doi.org/10.3390/electronics9111869

**AMA Style**

Qaisar ZH, Irfan M, Ali T, Ahmad A, Ali G, Glowacz A, Glowacz W, Caesarendra W, Mashraqi AM, Draz U,
et al. Effective Beamforming Technique Amid Optimal Value for Wireless Communication. *Electronics*. 2020; 9(11):1869.
https://doi.org/10.3390/electronics9111869

**Chicago/Turabian Style**

Qaisar, Zahid Hussain, Muhamamd Irfan, Tariq Ali, Ashfaq Ahmad, Ghulam Ali, Adam Glowacz, Witold Glowacz, Wahyu Caesarendra, Aisha Mousa Mashraqi, Umar Draz,
and et al. 2020. "Effective Beamforming Technique Amid Optimal Value for Wireless Communication" *Electronics* 9, no. 11: 1869.
https://doi.org/10.3390/electronics9111869