Electro-Mechanical Design and Creep Analysis of Proposed Enclosure for Flexible Gas Insulated Line Regarding Subsurface Metropolitan Applications of High-Voltage Transmission Lines
Abstract
:1. Introduction
2. Flexible Thermoplastic Variants
2.1. Flexibility Analysis of Polyethylene Variants
2.2. Minimum Longitudinal Bending Radius
2.3. Structural Pliability and Longitudinal Bending Analysis
3. Enclosure Design Deliberation
3.1. Mechanical Design Considerations
3.1.1. Pressure Rating and Dimension Ratio
3.1.1.1. Temperature and Environmental Application Factors
3.1.1.2. Hydrostatic Design Stress
3.1.1.3. Dimension Ratio
3.1.1.4. External Diameter
3.1.1.5. Maximum Allowable Operating Pressure
3.1.2. Incorporation of Creep Estimations
Permissible Creep Stress
Permissible Creep Modulus
Permissible Operating Pressure Regarding Creep Approximations
3.1.3. Longitudinal Deformation Apropos of Pressure and Temperature
3.1.4. Buckling Resistance Consideration
Buckling Resistance of Constrained Pipe
Buckling Resistance of Unconstrained Pipe
3.1.5. Prospective External Loadings Regarding Subsurface Implementation
Dead Load
Live Load
Surcharge Load
3.1.6. Compressive Stress for Subsurface Implemented Enclosure
3.1.7. Permissible External Pressure Regarding Underground Applications
3.1.8. Ring Deflection of for Subsurface Implemented Enclosure
3.2. Electrical Design Considerations
3.2.1. Electrode Gap Optimization
3.2.2. Breakdown Voltage Determination
3.2.3. Electrostatic Field Concerns
3.3. Determination of MLBR
3.4. Lay Length Consideration
4. Design Algorithm Flow Chart
5. Results and Discussion
5.1. Mechanical Aspects
5.1.1. Dimensional Specification Determination
5.1.2. Operating Pressure Comparison
5.1.3. Permissible Longitudinal Variations
5.1.4. Wall Buckling Appraisal
5.1.5. Wall Compressive Stress Assessment
5.1.6. Percentage Ring Deflection Appraisal
5.1.7. MLBR Comparison
5.1.8. Lay Length Comparison
5.1.9. Safety Factor Appraisal
5.1.10. Dimensional Comparison
5.2. Electrical Aspects
5.2.1. Dimensional Optimization Regarding FUF
5.2.2. Electrode Gap Comparison
5.2.3. Breakdown Voltage Appraisal
5.2.4. Field Stress Distribution Regarding Bended Segments
5.2.5. Field Intensity Comparison
5.2.6. FUF Appraisal
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adedeji, K.; Ponnle, A.; Abe, B.; Jimoh, A. Effect of increasing energy demand on the corrosion rate of buried pipelines in the vicinity of high voltage overhead transmission lines. In Proceedings of the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, 2–4 September 2015; pp. 299–303. [Google Scholar]
- Sardaro, R.; Bozzo, F.; Fucilli, V. High-voltage overhead transmission lines and farmland value: Evidences from the real estate market in Apulia, southern Italy. Energy Policy 2018, 119, 449–457. [Google Scholar] [CrossRef]
- Wiedemann, P.M.; Boerner, F.; Claus, F. How far is how far enough? Safety perception and acceptance of extra-high-voltage power lines in Germany. J. Risk Res. 2018, 21, 463–479. [Google Scholar] [CrossRef]
- Fan, F.; Wu, G.; Wang, M.; Cao, Q.; Yang, S. Robot delay-tolerant sensor network for overhead transmission line monitoring. Appl. Sci. 2018, 8, 847. [Google Scholar] [CrossRef]
- Neureiter, C.; Engel, D.; Uslar, M. Domain Specific and Model Based Systems Engineering in the Smart Grid as Prerequesite for Security by Design. Electronics 2016, 5, 24. [Google Scholar] [CrossRef]
- Gautam, B.R.; Li, F.; Ru, G. Assessment of urban roof top solar photovoltaic potential to solve power shortage problem in Nepal. Energy Build. 2015, 86, 735–744. [Google Scholar] [CrossRef]
- Hajeforosh, S.; Pooranian, Z.; Shabani, A.; Conti, M. Evaluating the high frequency behavior of the modified grounding scheme in wind farms. Appl. Sci. 2017, 7, 1323. [Google Scholar] [CrossRef]
- Kamal, T.; Karabacak, M.; Hassan, S.Z.; Fernández-Ramírez, L.M.; Riaz, M.H.; Riaz, M.T.; Khan, M.A.; Khan, L. Energy management and switching control of PHEV charging stations in a hybrid smart micro-grid system. Electronics 2018, 7, 156. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, X.; Chen, Z.; Wu, W.; Li, T. Risk assessment for wildfire occurrence in high-voltage power line corridors by using remote-sensing techniques: A case study in Hubei Province, China. Int. J. Remote Sens. 2016, 37, 4818–4837. [Google Scholar] [CrossRef]
- Sun, C.-C.; Liu, C.-C.; Xie, J. Cyber-physical system security of a power grid: State-of-the-art. Electronics 2016, 5, 40. [Google Scholar] [CrossRef]
- Benato, R.; Sessa, S.D.; Guizzo, L.; Rebolini, M. Saving environmental impact of electrical energy transmission by employing existing/planned transport corridors. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Benato, R.; Sessa, S.D.; Guizzo, L.; Rebolini, M. Synergy of the future: High voltage insulated power cables and railway-highway structures. IET Gener. Transm. Distrib. 2017, 11, 2712–2720. [Google Scholar] [CrossRef]
- Kukharchuk, I.; Kazakov, A.; Trufanova, N. Investigation of heating of 150 kV underground cable line for various conditions of laying. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tomsk, Russia, 4–6 December 2017; p. 022041. [Google Scholar]
- Salata, F.; Nardecchia, F.; de Lieto Vollaro, A.; Gugliermetti, F. Underground electric cables a correct evaluation of the soil thermal resistance. Appl. Therm. Eng. 2015, 78, 268–277. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, W.; Wang, Y. Characteristic impedance analysis of medium-voltage underground cables with grounded shields and armors for power line communication. Electronics 2019, 8, 571. [Google Scholar] [CrossRef]
- Lauria, D.; Quaia, S. Technical comparison between a gas-insulated line and a traditional three-bundled OHL for a 400 kV, 200 km connection. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 597–601. [Google Scholar]
- Wang, M.; Wu, G.; Fan, F.; Ji, Q.; He, W.; Cao, Q. Dynamic network topology control of branch-trimming robot for transmission lines. Electronics 2019, 8, 549. [Google Scholar] [CrossRef]
- Magier, T.; Tenzer, M.; Koch, H. Direct current gas-insulated transmission lines. IEEE Trans. Power Deliv. 2018, 33, 440–446. [Google Scholar] [CrossRef]
- Magier, T.; Dehler, A.; Koch, H. AC Compact High Power Gas-Insulated Transmission Lines. In Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, 16–19 April 2018; pp. 1–5. [Google Scholar]
- Koch, H.; Goll, F.; Magier, T.; Juhre, K. Technical aspects of gas insulated transmission lines and application of new insulating gases. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1448–1453. [Google Scholar] [CrossRef]
- Widger, P.; Haddad, A. Evaluation of SF6 leakage from gas insulated equipment on electricity networks in Great Britain. Energies 2018, 11, 2037. [Google Scholar] [CrossRef]
- Mueller, C.E.; Keil, S.I.; Bauer, C. Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony. Energy Policy 2017, 111, 137–147. [Google Scholar] [CrossRef]
- Crespi, C.M.; Vergara, X.P.; Hooper, C.; Oksuzyan, S.; Wu, S.; Cockburn, M.; Kheifets, L. Childhood leukaemia and distance from power lines in California: A population-based case-control study. Br. J. Cancer 2016, 115, 122. [Google Scholar] [CrossRef]
- Brinkley, C.; Leach, A. Energy next door: A meta-analysis of energy infrastructure impact on housing value. Energy Res. Soc. Sci. 2019, 50, 51–65. [Google Scholar] [CrossRef]
- Koch, H. Gas Insulated Transmission Lines (GIL); John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- McDonald, J.D. Electric Power Substations Engineering; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Zarchi, D.A.; Vahidi, B. Optimal placement of underground cables to maximize total ampacity considering cable lifetime. IET Gener. Transm. Distrib. 2016, 10, 263–269. [Google Scholar] [CrossRef]
- Shabangu, T.; Shrivastava, P.; Abe, B.; Adedeji, K.; Olubambi, P. Influence of AC interference on the cathodic protection potentials of pipelines: Towards a comprehensive picture. In Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 597–602. [Google Scholar]
- Tenzer, M.; Koch, H.; Imamovic, D. Underground transmission lines for high power AC and DC transmission. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 2–5 May 2016; pp. 1–4. [Google Scholar]
- Zhou, T. Study on mechanical properties of transmission pipe materials. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 10–11 November 2018; p. 012090. [Google Scholar]
- Chakir, A.; Koch, H. Seismic calculations of directly buried gas-insulated transmission lines (GIL). In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002; pp. 1026–1029. [Google Scholar]
- Imamovic, D.T.; Tenzer, M.; Koch, H. High power underground transmission lines. In Proceedings of the 9th International Conference on Insulated Power Cables France, Versailles, France, 21–25 June 2015. [Google Scholar]
- Chakir, A.; Koch, H. Corrosion protection for gas-insulated transmission lines. In Proceedings of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; pp. 220–224. [Google Scholar]
- Wang, K.; Liu, K.; Song, X.; Zhang, J.; Lu, G. Design and test of 2250 kV semi-flexible SF6 insulated high voltage pulse transmission line. In Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Diego, CA, USA, 3–7 June 2012; pp. 683–686. [Google Scholar]
- Alvi, M.; Izhar, T.; Qaiser, A. Proposed scheme of pliable gas insulated transmission line and its comparative appraisal regarding electrostatic and dielectric aspects. Electronics 2018, 7, 328. [Google Scholar] [CrossRef]
- Thomas, H.; Marian, A.; Chervyakov, A.; Stückrad, S.; Salmieri, D.; Rubbia, C. Superconducting transmission lines–Sustainable electric energy transfer with higher public acceptance? Renew. Sustain. Energy Rev. 2016, 55, 59–72. [Google Scholar] [CrossRef]
- Jianying, Z.; Yujing, G.; Guangyao, J.; Liping, D. Research on the key technology of 1100 kV SF 6 gas-insulated metal-enclosed transmission line. In Proceedings of the 2017 4th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST), Xi’an, China, 22–25 October 2017; pp. 30–33. [Google Scholar]
- Guo, J.; Chen, H. Research on horizontal directional drilling locating technology based on seismic interference. In Proceedings of the 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Harbin, China, 11–14 January 2019; pp. 1–4. [Google Scholar]
- Wang, Y.; Wen, G.; Chen, H. Horizontal directional drilling-length detection technology while drilling based on bi-electro-magnetic sensing. Sensors 2017, 17, 967. [Google Scholar] [CrossRef] [PubMed]
- Bascom, E.C.R.; Rezutko, J. Novel installation of a 138kv pipe-type cable system under water using horizontal directional drilling. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [Google Scholar]
- Alvi, M.J.; Izhar, T.; Qaiser, A.A.; Kharal, H.S.; Safdar, A. Field optimization and electrostatic stress reduction of proposed conductor scheme for pliable gas-insulated transmission lines. Appl. Sci. 2019, 9, 2988. [Google Scholar] [CrossRef]
- Alvi, M.J.; Izhar, T.; Qaiser, A.A.; Afzaal, M.U.; Anjum, A.; Safdar, A. Pliability assay of conventional gas insulated transmission line and flexible gas insulated transmission line regarding horizontal directional drilling based underground cable laying for metropolitan areas. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–5. [Google Scholar]
- Li, Y.; Liu, W.; Ren, X. Critical stress of high-density polyethylene during stress and photo-oxidative aging. Polym. Eng. Sci. 2015, 55, 2277–2284. [Google Scholar] [CrossRef]
- Weingrill, H.; Resch-Fauster, K.; Lucyshyn, T.; Zauner, C. High-density polyethylene as phase-change material: Long-term stability and aging. Polym. Test. 2019, 76, 433–442. [Google Scholar] [CrossRef]
- Hu, W.; Liu, W.; Ren, X. The study on aging behaviors and critical stress of cross-linked high-density polyethylene during stress and photo-oxidative aging. J. Polym. Res. 2019, 26, 114. [Google Scholar] [CrossRef]
- Becerra, A.; d’Almeida, J. UV effects on the tensile and creep behaviour of HDPE. Polym. Polym. Compos. 2017, 25, 327–332. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, S.; Sun, C.; Guo, J.; Yu, Y.; Xu, T. Aging behaviour and properties evaluation of high-density polyethylene (HDPE) in heating-oxygen environment. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kitakyushu City, Japan, 10–13 April 2018; p. 012021. [Google Scholar]
- Fairbrother, A.; Hsueh, H.-C.; Kim, J.H.; Jacobs, D.; Perry, L.; Goodwin, D.; White, C.; Watson, S.; Sung, L.-P. Temperature and light intensity effects on photo degradation of high-density polyethylene. Polym. Degrad. Stab. 2019, 165, 153–160. [Google Scholar] [CrossRef]
- Dai, J.; Yan, H.; Yang, J.J.; Guo, J.J. Evaluation of the aging behavior of high density polyethylene in thermal oxidative environment by principal component analysis. Key Eng. Mater. 2017, 727, 447–449. [Google Scholar] [CrossRef]
- Barsoum, I.; Barsoum, Z.; Islam, D. Thermo-mechanical evaluation of the performance and integrity of a HDPE stub-end bolted flange connection. J. Press. Vessel Technol. 2019, 141, 051206. [Google Scholar] [CrossRef]
- Mahl, M.; Jelich, C.; Baier, H. Thermo-mechanical behavior of polyethylene under mechanical loads at cryogenic and elevated temperatures. Int. J. Press. Vessel. Pip. 2017, 150, 11–18. [Google Scholar] [CrossRef]
- Merah, N.; Saghir, F.; Khan, Z.; Bazoune, A. Effect of temperature on tensile properties of HDPE pipe material. Plast. Rubber Compos. 2006, 35, 226–230. [Google Scholar] [CrossRef]
- SIMONA. Engineering Manual for Piping Systems; SIMONA: Kirn, Germany, 2010. [Google Scholar]
- DIN 8075. Polyethylene (PE) Pipes—PE 80, PE 100—General Quality Requirements, Testing; German Institute for Standardization: Berlin, Germany, 2018. [Google Scholar]
- DIN 8074. Polyethylene (PE)—Pipes PE 80, PE 100—Dimensions; German Institute for Standardization: Berlin, Germany, 2011. [Google Scholar]
- Plastics Pipe Institute. TR-4/2018-PPI Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Ratings For Thermoplastic Piping Materials or Pipe; Plastics Pipe Institute: Irving, TX, USA, 2018. [Google Scholar]
- DIN-DVS 2205-1. Calculation of Tanks and Apparatus Made of Thermoplastics—Characteristic Values; German Institute of Standardization: Berlin, Germany, 2015. [Google Scholar]
- ISO 4437. Plastics Piping Systems for the Supply of Gaseous Fuels—Polyethylene (PE); International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Plastics Pipe Institute. The Plastics Pipe Institute: Handbook of Polyethylene Pipe; Plastics Pipe Institute: Irving, TX, USA, 2006. [Google Scholar]
- American Water Works Association. Manual M55: PE Pipe—Design and Installation, 1st ed.; American Water Works Association: Denver, CO, USA, 2006. [Google Scholar]
- Performance Pipe. Driscopipe® 8100 Series Polyethylene Piping Produced from PE 4710-PE 100 Material; Performance Pipe: Plano, TX, USA, 2006. [Google Scholar]
- WL Plastics. HDPE Pressure Pipe—Determining Pressure Ratings for Applications. Available online: www.wlplastics.com (accessed on 26 July 2019).
- Performance Pipe. Technical Note-PP 816-TN PE3608 & PE4710 Materials Designation Codes and Pipe Pressure Ratings; Performance Pipe: Plano, TX, USA, 2011. [Google Scholar]
- Palermo, G. Comparison Between PE 4710 (PE 4710 PLUS) and PE 100 (PE 100+, PE 100 RC). Plastic Pipe Institute: Dallas, TX, USA. Available online: http://www.plasticspipe.com/docs/41 (accessed on 26 July 2019).
- ASTM D2837. Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products; ASTM Intl.: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ISO 9080:2012. Plastics Piping and Ducting Systems—Determination of the Long-Term Hydrostatic Strength of Thermoplastics Materials in Pipe Form by Extrapolation; International Organization of Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Chen, L.; Griffiths, H.; Haddad, A.; Kamarudin, M. Breakdown of cf 3 i gas and its mixtures under lightning impulse in coaxial-GIL geometry. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1959–1967. [Google Scholar] [CrossRef]
- Chen, L.; Widger, P.; Kamarudin, M.S.; Griffiths, H.; Haddad, A. CF3I gas mixtures: Breakdown characteristics and potential for electrical insulation. IEEE Trans. Power Deliv. 2016, 32, 1089–1097. [Google Scholar] [CrossRef]
- Malik, N.H.; Al-Arainy, A.; Qureshi, M.I. Electrical Insulation in Power Systems; Marcel Dekker: New York, NY, USA, 1998. [Google Scholar]
- Li, X.; Zhao, H.; Jia, S.; Murphy, A.B. Study of the dielectric breakdown properties of hot SF6–CF4 mixtures at 0.01–1.6 MPa. J. Appl. Phys. 2013, 114, 053302. [Google Scholar] [CrossRef]
- DriscoPlex® 6300 PE4710 Pipe. Available online: www.performancepipe.com (accessed on 27 July 2019).
- Auansakul, C. High Temperature Polyethylene (PE-RT) Thermal Distribution Application. In Proceedings of the International District Energy Association, Austin, TX, USA, 8–12 February 2016. [Google Scholar]
Sr. No. | Resin | Minimum Required Strength (MRS) (MPa) (ISO 4437:2007) | Density (g/cm3) (ISO 1183) | Long Term Hydrostatic Strength (LTHS) (MPa) (ISO 4437:2007) | Tensile Strength (TS) (MPa) |
---|---|---|---|---|---|
1. | PE 63 | 6.3 | 0.94 | 7.4 | Low |
2. | PE 80 | 8 | 0.95 | 9 | Moderate |
3. | PE 100 | 10 | 0.96 | 12.4 | High |
Sr. No. | Resin | Pressure Rating (Bar) | Outer Diameter (mm) | Dimension Ratio |
---|---|---|---|---|
1. | PE 80 | 8 | 50 | 13 |
2. | PE 80 | 8 | 125 | 13 |
3. | PE 80 | 8 | 250 | 13 |
1. | PE 100 | 8 | 50 | 17 |
2. | PE 100 | 8 | 125 | 17 |
3. | PE 100 | 8 | 250 | 17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junaid Alvi, M.; Izhar, T.; Ali Qaiser, A.; Anjum, A.; ul Hassan, R. Electro-Mechanical Design and Creep Analysis of Proposed Enclosure for Flexible Gas Insulated Line Regarding Subsurface Metropolitan Applications of High-Voltage Transmission Lines. Electronics 2019, 8, 929. https://doi.org/10.3390/electronics8090929
Junaid Alvi M, Izhar T, Ali Qaiser A, Anjum A, ul Hassan R. Electro-Mechanical Design and Creep Analysis of Proposed Enclosure for Flexible Gas Insulated Line Regarding Subsurface Metropolitan Applications of High-Voltage Transmission Lines. Electronics. 2019; 8(9):929. https://doi.org/10.3390/electronics8090929
Chicago/Turabian StyleJunaid Alvi, Muhammad, Tahir Izhar, Asif Ali Qaiser, Awais Anjum, and Rizwan ul Hassan. 2019. "Electro-Mechanical Design and Creep Analysis of Proposed Enclosure for Flexible Gas Insulated Line Regarding Subsurface Metropolitan Applications of High-Voltage Transmission Lines" Electronics 8, no. 9: 929. https://doi.org/10.3390/electronics8090929
APA StyleJunaid Alvi, M., Izhar, T., Ali Qaiser, A., Anjum, A., & ul Hassan, R. (2019). Electro-Mechanical Design and Creep Analysis of Proposed Enclosure for Flexible Gas Insulated Line Regarding Subsurface Metropolitan Applications of High-Voltage Transmission Lines. Electronics, 8(9), 929. https://doi.org/10.3390/electronics8090929