Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)
1. Introduction
- Driver monitoring: [17];
- “Performance Comparison of Geobroadcast Strategies for Winding Roads” by Talavera et al. [2];
- “LiDAR and Camera Detection Fusion in a Real-Time Industrial Multi-Sensor Collision Avoidance System” by Wei et al. [4]; and
- “A New Dataset and Performance Evaluation of a Region-Based CNN for Urban Object Detection” by Dominguez-Sanchez et al. [15].
2. The Present Special Issue
2.1. Communications
2.2. Object Detection and Tracking
2.3. Sensor Modeling and Simulation
2.4. Decision-Making
2.5. New Datasets
2.6. Driver Monitoring
2.7. New Applied Hardware for ADAS
3. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Electronics Special Issue: Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS), 2019. Available online: https://www.mdpi.com/journal/electronics/special_issues/ML_EmbeddedComputing_ADAS (accessed on 25 June 2019).
- Talavera, E.; Anaya, J.J.; Gómez, O.; Jiménez, F.; Naranjo, J.E. Performance Comparison of Geobroadcast Strategies for Winding Roads. Electronics 2018, 7, 32. [Google Scholar] [CrossRef]
- Jiménez, F.; Naranjo, J.E.; Sánchez, S.; Serradilla, F.; Pérez, E.; Hernández, M.J.; Ruiz, T. Communications and Driver Monitoring Aids for Fostering SAE Level-4 Road Vehicles Automation. Electronics 2018, 7, 228. [Google Scholar] [CrossRef]
- Wei, P.; Cagle, L.; Reza, T.; Ball, J.; Gafford, J. LiDAR and Camera Detection Fusion in a Real-Time Industrial Multi-Sensor Collision Avoidance System. Electronics 2018, 7, 84. [Google Scholar] [CrossRef]
- Han, T.; Wang, L.; Wen, B. The Kernel Based Multiple Instances Learning Algorithm for Object Tracking. Electronics 2018, 7, 97. [Google Scholar] [CrossRef]
- Wei, J.; Liu, F. Coupled-Region Visual Tracking Formulation Based on a Discriminative Correlation Filter Bank. Electronics 2018, 7, 244. [Google Scholar] [CrossRef]
- Jung, J.; Bae, S.H. Real-Time Road Lane Detection in Urban Areas Using LiDAR Data. Electronics 2018, 7, 276. [Google Scholar] [CrossRef]
- Wang, X.; Hua, X.; Xiao, F.; Li, Y.; Hu, X.; Sun, P. Multi-Object Detection in Traffic Scenes Based on Improved SSD. Electronics 2018, 7, 302. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, L.; Lyu, Y.; Huang, X. Camera-Based Blind Spot Detection with a General Purpose Lightweight Neural Network. Electronics 2019, 8, 233. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Liu, X.; He, H.R.; Gu, Q.; Sun, W. Learning to See the Hidden Part of the Vehicle in the Autopilot Scene. Electronics 2019, 8, 331. [Google Scholar] [CrossRef]
- Goodin, C.; Doude, M.; Hudson, C.R.; Carruth, D.W. Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation. Electronics 2018, 7, 154. [Google Scholar] [CrossRef]
- Goodin, C.; Carruth, D.; Doude, M.; Hudson, C. Predicting the Influence of Rain on LIDAR in ADAS. Electronics 2019, 8, 89. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Wang, S.; Li, P.; Liao, Y. Ethical and Legal Dilemma of Autonomous Vehicles: Study on Driving Decision-Making Model under the Emergency Situations of Red Light-Running Behaviors. Electronics 2018, 7, 264. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, J.; Wang, S.; Li, S.; Han, J. Study on Crash Injury Severity Prediction of Autonomous Vehicles for Different Emergency Decisions Based on Support Vector Machine Model. Electronics 2018, 7, 381. [Google Scholar] [CrossRef]
- Dominguez-Sanchez, A.; Cazorla, M.; Orts-Escolano, S. A New Dataset and Performance Evaluation of a Region-Based CNN for Urban Object Detection. Electronics 2018, 7, 301. [Google Scholar] [CrossRef]
- Li, Y.; Tong, G.; Gao, H.; Wang, Y.; Zhang, L.; Chen, H. Pano-RSOD: A Dataset and Benchmark for Panoramic Road Scene Object Detection. Electronics 2019, 8, 329. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.; Shin, M. Using Wearable ECG/PPG Sensors for Driver Drowsiness Detection Based on Distinguishable Pattern of Recurrence Plots. Electronics 2019, 8, 192. [Google Scholar] [CrossRef]
- Said, A.; Davizón, Y.; Soto, R.; Félix-Herrán, C.; Hernández-Santos, C.; Espino-Román, P. An Infinite-Norm Algorithm for Joystick Kinematic Control of Two-Wheeled Vehicles. Electronics 2018, 7, 164. [Google Scholar] [CrossRef]
- Dendaluce Jahnke, M.; Cosco, F.; Novickis, R.; Pérez Rastelli, J.; Gomez-Garay, V. Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles. Electronics 2019, 8, 250. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ball, J.E.; Tang, B. Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS). Electronics 2019, 8, 748. https://doi.org/10.3390/electronics8070748
Ball JE, Tang B. Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS). Electronics. 2019; 8(7):748. https://doi.org/10.3390/electronics8070748
Chicago/Turabian StyleBall, John E., and Bo Tang. 2019. "Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)" Electronics 8, no. 7: 748. https://doi.org/10.3390/electronics8070748
APA StyleBall, J. E., & Tang, B. (2019). Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS). Electronics, 8(7), 748. https://doi.org/10.3390/electronics8070748