Switching Power Suppliers Noise Reduction in Ultrasound Doppler Fluid Measurements
Abstract
:1. Introduction
2. Mathematical Model of Switching Noise and Doppler Signal Elaboration
2.1. Signal Model of Simple Mono-Frequency and Triangular-Modulated Square Pulses
2.2. Data Elaboration in a Doppler System
3. Method
3.1. Constant Frequency Noise
3.2. Triangle-Modulated Frequency Noise
4. Method Implementation in the Doppler System
4.1. Experimental Doppler System
4.2. Method Implementation in Hardware
5. Experiments and Results
5.1. MATLAB Simulations
5.2. Measurements in Hardware
5.3. Flow-Rig Measurements
6. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Evans, D.H.; McDicken, W.N. Doppler Ultrasound Physics, Instrumentation and Signal Processing; Wiley: Chichester, UK, 2000; ISBN 978-0471970019. [Google Scholar]
- Ricci, S.; Ramalli, A.; Bassi, L.; Boni, E.; Tortoli, P. Real-Time Blood Velocity Vector Measurement over a 2-D Region. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Fadnes, S.; Ekroll, I.K.; Nyrnes, I.K.; Torp, H.; Løvstakken, L. Robust angle-independent blood velocity estimation based on dual angle plane wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Birkhofer, B.; Debacker, A.; Russo, S.; Ricci, S.; Lootens, D. In-line rheometry based on ultrasonic velocity profiles: comparison of data processing methods. Appl. Rheol. 2012, 22, 44701. [Google Scholar]
- Wiklund, J.; Stading, M. Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions. Flow Meas. Instrum. 2008, 19, 171–179. [Google Scholar] [CrossRef]
- Kotzé, R.; Fester, V.; Kholisa, B.; Haldenwang, R.; Rössle, W. Commissioning of a novel in-line rheometery system in a wastewater treatment plant for more efficient polymer dosing. Flow Meas. Instrum. 2019, 65, 309–317. [Google Scholar] [CrossRef]
- Neveu, F.; Allard, B.; Martin, C.; Bevilacqua, P.; Voiron, F. A 100 MHz 91.5% Peak Efficiency Integrated Buck Converter With a Three-MOSFET Cascode Bridge. IEEE Trans. Power Electron. 2016, 31, 3985–3988. [Google Scholar] [CrossRef]
- Ricci, S.; Liard, M.; Birkhofer, B.; Lootens, D.; Brühwiler, A.; Tortoli, P. Embedded Doppler System for Industrial in-Line Rheometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, D.; Zhang, X.; Qu, F. Reliability of Boost PFC Converters with Improved EMI Filters. Electronics 2018, 7, 413. [Google Scholar] [CrossRef]
- Balcells, J.; Santolaria, A.; Diez, D.G.; Gago, J.; Orlandi, A. EMI reduction in switched power converters using frequency Modulation techniques. IEEE Trans. Electromagn. Compat. 2005, 47, 569–576. [Google Scholar] [CrossRef]
- Guo, H.; Wu, H.; Zhang, B.; Li, Z. A novel spread-spectrum clock generator for suppressing conducted EMI in switching power supply. Microelectron. J. 2010, 41, 93–98. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Huynh, H.A.; Kim, S.; Song, H. Active EMI Reduction Using Chaotic Modulation in a Buck Converter with Relaxed Output LC Filter. Electronics 2018, 7, 254. [Google Scholar] [CrossRef]
- CISPR 11:2015. Industrial, scientific and medical equipment—Radio-frequency disturbance characteristics—Limits and methods of measurement, 6th ed.; International Electrotechnical Commetee (IEC): Genevra, Switzerland, 2015. [Google Scholar]
- Bjaerum, S.; Torp, H.; Kristoffersen, K. Clutter filter design for ultrasound color flow imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 204–216. [Google Scholar] [CrossRef]
- Ricci, S.; Meacci, V.; Birkhofer, B.; Wiklund, J. FPGA-based System for In-Line Measurement of Velocity Profiles of Fluids in Industrial Pipe Flow. IEEE Trans. Ind. Electron. 2017, 64, 3997–4005. [Google Scholar] [CrossRef]
- Ricci, S.; Meacci, V. Data-Adaptive Coherent Demodulator for High Dynamics Pulse-Wave Ultrasound Applications. Electronics 2018, 7, 434. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297. [Google Scholar] [CrossRef]
- Ricci, S. Adaptive spectral estimators for fast flow-profile detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 421–427. [Google Scholar] [CrossRef]
- Elif, D.Ü.; Hakan, I.; İnan, G. Application of FFT and Arma Spectral Analysis to Arterial Doppler Signals. Math. Comput. Appl. 2003, 8, 311–318. [Google Scholar] [Green Version]
- Larsson, E.G.; Stoica, P. Fast Implementation of Two-Dimensional APES and CAPON Spectral Estimators. Multidimens. Syst. Process. 2002, 13, 35–53. [Google Scholar] [CrossRef]
- Meacci, V.; Ricci, S.; Wiklund, J.; Birkhofer, B.; Kotze, R. Flow-Viz - An integrated digital in-line fluid characterization system for industrial applications. In Proceedings of the 11th IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016. [Google Scholar]
- Analog Devices. Available online: https://www.analog.com/en/products/lt3507.html (accessed on 11 March 2019).
- Kotzé, R.; Ricci, S.; Birkhofer, B.; Wiklund, J. Performance tests of a new non-invasive sensor unit and ultrasound electronics. Flow Meas. Instrum. 2016, 48, 104–111. [Google Scholar] [CrossRef]
- Granger, R.A. Fluid Mechanics; Dover: Mineola, NY, USA, 1995. [Google Scholar]
- Ricci, S.; Matera, R.; Tortoli, P. An improved Doppler model for obtaining accurate maximum blood velocities. Ultrasonics 2014, 54, 2006–2014. [Google Scholar] [CrossRef]
- Morganti, T.; Ricci, S.; Vittone, F.; Palombo, C.; Tortoli, P. Clinical validation of common carotid artery wall distension assessment based on multigate Doppler processing. Ultrasound Med. Biol. 2005, 31, 937–945. [Google Scholar] [CrossRef] [PubMed]
10 kHz < < 20kHz | = |
5 kHz < < 10kHz | = |
4 kHz < < 5kHz | = |
2 kHz < < 4kHz | = |
1 kHz < < 2kHz | = |
0.5 kHz < < 1kHz | = |
0.4 kHz < < 0.5kHz | = |
0.2 kHz < < 0.4kHz | = |
0.1 kHz < < 0.2kHz | = |
Parameter | No Modulation | Triangle Modulation |
---|---|---|
- | 14.0003 kHz | |
142.860 µs | 142.860 µs | |
- | 1.6 MHz | |
2.0 MHz | 2.0 MHz | |
3.8 MHz | 3.8 MHz | |
300 kHz | 300 kHz | |
10 ns | 10 ns | |
14,286 | 14,286 |
Parameter | No Modulation | Triangle Modulation |
---|---|---|
- | 13.9860 kHz | |
143 µs | 143 µs | |
- | 1.5944 MHz | |
2.0 MHz | 2.014 MHz | |
3.8 MHz | 3.8 MHz | |
300 kHz | 300 kHz | |
10 ns | 10 ns | |
14300 | 14300 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, S. Switching Power Suppliers Noise Reduction in Ultrasound Doppler Fluid Measurements. Electronics 2019, 8, 421. https://doi.org/10.3390/electronics8040421
Ricci S. Switching Power Suppliers Noise Reduction in Ultrasound Doppler Fluid Measurements. Electronics. 2019; 8(4):421. https://doi.org/10.3390/electronics8040421
Chicago/Turabian StyleRicci, Stefano. 2019. "Switching Power Suppliers Noise Reduction in Ultrasound Doppler Fluid Measurements" Electronics 8, no. 4: 421. https://doi.org/10.3390/electronics8040421
APA StyleRicci, S. (2019). Switching Power Suppliers Noise Reduction in Ultrasound Doppler Fluid Measurements. Electronics, 8(4), 421. https://doi.org/10.3390/electronics8040421