High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery
Abstract
:1. Introduction
2. Imaging Azimuth Missing SAR Raw Data via Segmented Recovery
2.1. Reference Function in Time Domain
2.2. Segmented Recovery
2.3. Procedure of Proposed Method
3. Experiments
3.1. Point Target Simulation
3.2. Area Target Simulation
3.3. Real Data Processing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Curlander, J.C.; Mcdonough, R.N. Synthetic Aperture Radar Systems and Signal Processing, 1st ed.; John Wiley & Sons: Etobicoke, ON, Canada, 1991; pp. 1–70. [Google Scholar]
- Yang, M.; Zhu, D. Efficient Space-Variant Motion Compensation Approach for Ultra-High-Resolution SAR Based on Subswath Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2090–2103. [Google Scholar] [CrossRef]
- Li, N.; Wang, R.; Deng, Y.; Zhao, T.; Wang, W.; Zhang, H. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1804–1812. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, D. Height Retrieval in Postprocessing-Based VideoSAR Image Sequence Using Shadow Information. IEEE Sens. J. 2018, 18, 8108–8116. [Google Scholar] [CrossRef]
- Penner, J.F.; Long, D.G. Ground-Based 3D Radar Imaging of Trees Using a 2D Synthetic Aperture. Electronics 2017, 6, 11. [Google Scholar] [CrossRef]
- Lao, G.; Yin, C.; Ye, W.; Sun, Y.; Li, G.; Han, L. An SAR-ISAR Hybrid Imaging Method for Ship Targets Based on FDE-AJTF Decomposition. Electronics 2018, 7, 46. [Google Scholar] [CrossRef]
- Yuri, A.L.; Maria, G.F.; Raphael, G.; Fernando, L. A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization. Electronics 2018, 7, 373. [Google Scholar] [CrossRef]
- Cetin, M.; Stojanovic, I.; Onhon, N.O.; Varshney, K.R.; Samadi, S.; Karl, W.C.; Willksy, A.S. Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process. Mag. 2014, 31, 27–40. [Google Scholar] [CrossRef]
- Larsson, E.G.; Stoica, P.; Li, J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans. Signal Process. 2002, 50, 1343–1354. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996, 44, 1469–1484. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Stoica, P. Spectral Analysis of Signals: The Missing Data Case, 1st ed.; Morgan & Claypool: San Rafael, CA, USA, 2005; pp. 13–30. [Google Scholar]
- Wang, Y.; Stoica, P.; Li, J. Two-dimensional nonparametric spectral analysis in missing data case. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1604–1616. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Gudmundson, E.; Jakobsson, A.; Stoica, P. Blood velocity estimation using ultrasound and spectral iterative adaptive approaches. Signal Process. 2011, 91, 1275–1283. [Google Scholar] [CrossRef]
- Karlsson, J.; Rowe, W.; Xu, L.; Glentis, G.O.; Li, J. Fast missing-data IAA with application to notched spectrum SAR. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 959–971. [Google Scholar] [CrossRef]
- Glentis, G.O.; Zhao, K.; Jakobsson, A.; Li, J. Non-Parametric High-Resolution SAR Imaging. IEEE Trans. Signal Process. 2013, 61, 1614–1624. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, Q.; Luo, Y.; Sun, L. Compressed Sensing SAR Imaging Based on Centralized Sparse Representation. IEEE Sens. J. 2018, 18, 4920–4932. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, L.; Wang, Z.; Zhang, B.; Lin, Y.; Yu, Y. Wide Angle SAR Subaperture Imaging Based on Modified Compressive Sensing. IEEE Sens. J. 2018, 18, 5439–5444. [Google Scholar] [CrossRef]
- Qian, Y.; Zhu, D. High-resolution SAR imaging from azimuth periodically gapped raw data via generalised orthogonal matching pursuit. Electron. Lett. 2018, 54, 1235–1236. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Super-Resolution Sparse Aperture ISAR Imaging of Maneuvering Target via the RELAX Algorithm. IEEE Sens. J. 2018, 18, 8726–8738. [Google Scholar] [CrossRef]
- Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [Google Scholar] [CrossRef]
- Mao, X.; He, X.; Li, D. Knowledge-Aided 2-D Autofocus for Spotlight SAR Range Migration Algorithm Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5458–5470. [Google Scholar] [CrossRef]
- Berizzi, F.; Corsini, G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1185–1191. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. SAR minimum-entropy autofocus using an adaptive order polynomial model. IEEE Geosci. Remote Sens. Lett. 2006, 3, 512–516. [Google Scholar] [CrossRef]
- Li, N.; Wang, R.; Deng, Y.; Yu, W.; Zhang, Z.; Liu, Y. Autofocus Correction of Residual RCM for VHR SAR Sensors With Light-Small Aircraft. IEEE Trans. Geosci. Remote Sens. 2017, 55, 441–452. [Google Scholar] [CrossRef]
IE | IC | |||
---|---|---|---|---|
Point Target | Real SAR Data | Point Target | Real SAR Data | |
Echo data | 15.6475 | 13.9778 | 1.3344 | 1.1470 |
Echo data 2D spectrum | 15.1426 | 13.7243 | 2.0943 | 5.7378 |
2D spectrum of g(τ,η) | 9.4334 | 12.7740 | 244.3008 | 18.6125 |
Parameter Name | Value | Units |
---|---|---|
Slant range of scene center | 8 | km |
Transmitted pulse duration | 2 | μs |
Signal bandwidth | 600 | MHz |
Range sampling rate | 720 | MHz |
Pulse repetition frequency | 1024 | Hz |
Radar center frequency | 10 | GHz |
Radar velocity | 120 | m/s |
Range resolution | 0.25 | m |
Azimuth resolution | 0.25 | m |
T | Range | Azimuth | ||||
---|---|---|---|---|---|---|
IRW(m) | PSLR(dB) | ISLR(dB) | IRW(m) | PSLR(dB) | ISLR(dB) | |
1 | 0.2229 | −13.21 | −10.43 | 0.2147 | −13.38 | −10.51 |
2 | 0.2224 | −13.13 | −10.25 | 0.2128 | −13.10 | −10.26 |
3 | 0.2211 | −13.18 | −10.41 | 0.2138 | −13.37 | −10.51 |
4 | 0.2215 | −13.44 | −10.54 | 0.2241 | −13.34 | −10.46 |
5 | 0.2219 | −13.31 | −10.37 | 0.2220 | −13.19 | −10.34 |
6 | 0.2215 | −13.42 | −10.54 | 0.2222 | −13.31 | −10.49 |
7 | 0.2213 | −13.17 | −10.39 | 0.2325 | −13.32 | −10.59 |
8 | 0.2215 | −13.19 | −10.26 | 0.2318 | −13.12 | −10.32 |
9 | 0.2211 | −13.16 | −10.39 | 0.2325 | −13.30 | −10.58 |
Complete Data | Adding Zeroes | GAPES | IAA | The Proposed Method | |
---|---|---|---|---|---|
IE | 12.0088 | 14.1783 | 12.4630 | 12.0100 | 12.0182 |
IC | 9.9167 | 5.3211 | 8.3973 | 9.9156 | 9.9052 |
IE | IC | |||||||
---|---|---|---|---|---|---|---|---|
Whole | Region 1 | Region 2 | Region 3 | Whole | Region 1 | Region 2 | Region 3 | |
Complete data | 17.02 | 13.67 | 14.38 | 14.30 | 7.99 | 12.71 | 2.54 | 2.68 |
Adding zeroes | 17.23 | 14.22 | 14.60 | 14.54 | 4.04 | 6.41 | 1.57 | 1.72 |
GAPES | 17.17 | 14.10 | 14.54 | 14.44 | 4.66 | 8.15 | 1.66 | 1.86 |
IAA | 17.24 | 14.24 | 14.59 | 14.53 | 4.01 | 6.44 | 1.62 | 1.77 |
Proposed method | 17.25 | 14.08 | 14.57 | 14.53 | 5.33 | 9.73 | 1.68 | 1.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Zhu, D. High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery. Electronics 2019, 8, 336. https://doi.org/10.3390/electronics8030336
Qian Y, Zhu D. High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery. Electronics. 2019; 8(3):336. https://doi.org/10.3390/electronics8030336
Chicago/Turabian StyleQian, Yulei, and Daiyin Zhu. 2019. "High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery" Electronics 8, no. 3: 336. https://doi.org/10.3390/electronics8030336
APA StyleQian, Y., & Zhu, D. (2019). High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery. Electronics, 8(3), 336. https://doi.org/10.3390/electronics8030336