Distributionally Robust Model of Energy and Reserve Dispatch Based on Kullback–Leibler Divergence
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Energy and Reserve Dispatch Model
2.2. DRO Model Based on KL-Divergence
3. Reformulation of Optimization Model
3.1. Ambiguity Set Construction
3.2. RDB-DRER Model
4. Solution Strategy
Algorithm 1 Energy and Reserve Dispatch. |
1: Collect historical data regarding variable uncertainties; 2: Construct the uncertainty set using KL divergence method; 3: Design an empirical distribution using (20) and (21); 4: Reformulate the energy and reserve dispatch problem into (33); 5: Decompose the optimization problem into (34) and (35); 6: Use the SAA method to approximate problem (36); 7: Solve problem (38). |
5. Case Study
5.1. 6-Bus System
5.2. 118-Bus System
5.3. Discussion
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Nomenclature
, , | Generation cost coefficients |
Start-up cost | |
Start-up variable | |
Active power output | |
, | Up and down reserve cost coefficients |
, | Up and down reserve capacities |
, | Maximum and minimum output |
Forecast power of renewable energy | |
load | |
Transmission capacity limit | |
Shift distribution factor of node to line | |
, | Up and down ramp-rate |
Dispatch interval | |
, | Up and down re-dispatch cost coefficients |
, | Up and down re-dispatch power |
Renewable energy power curtailment cost coefficient | |
Load shedding cost coefficient | |
Renewable energy power curtailment | |
Load shedding | |
Curtailed power of renewable energy | |
Forecast error of renewable energy output | |
x | First-stage decision variable vector |
y | Second-stage decision variable vector |
, | Dual variable |
Uncertainty set |
References
- Manjure, D.P.; Mishra, Y.; Brahma, S.; Osborn, D.L. Impact of Renewable energy Power Development on Transmission Planning at Midwest ISO. IEEE Trans. Sustain. Energy 2012, 3, 845–852. [Google Scholar] [CrossRef]
- Yang, X.; Song, Y.; Wang, G.; Wang, W. A Comprehensive Review on the Development of Sustainable Energy Strategy and Implementation in China. IEEE Trans. Sustain. Energy 2010, 1, 57–65. [Google Scholar] [CrossRef]
- van Ackooij, W.; Finardi, E.C.; Ramalho, G.M. An Exact Solution Method for the Hydrothermal Unit Commitment Under Renewable energy Power Uncertainty with Joint Probability Constraints. IEEE Trans. Power Syst. 2018, 33, 6487–6500. [Google Scholar] [CrossRef]
- Tang, C.; Xu, J.; Tan, Y.; Sun, Y. Lagrangian Relaxation with Incremental Proximal Method for Economic Dispatch with Large Numbers of Wind Power Scenarios. IEEE Trans. Power Syst. 2019, 34, 2685–2695. [Google Scholar] [CrossRef]
- Hedayati-Mehdiabadi, M.; Zhang, J.; Hedman, K.W. Wind Power Dispatch Margin for Flexible Energy and Reserve Scheduling With Increased Wind Generation. IEEE Trans. Sustain. Energy 2015, 6, 1543–1552. [Google Scholar] [CrossRef]
- Lai, T.L. Stochastic Approximation. Ann. Stat. 2003, 31, 391–406. [Google Scholar] [CrossRef]
- Shapiro, A. Sample Average Approximation. In Advertising Response, Encyclopedia of Operations Reseach; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Jiang, R.; Guan, Y. Data-driven chance constrained stochastic program. Math. Program. 2016, 158, 291–327. [Google Scholar] [CrossRef]
- Lopez, C.J.; Ano, O.; Ojeda Esteybar, D. Stochastic Unit Commitment & Optimal Allocation of Reserves: A Hybrid Decomposition Approach. IEEE Trans. Power Syst. 2018, 33, 5542–5552. [Google Scholar]
- Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach. Appl. Energy 2018, 222, 932–950. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. Int. J. Electr. Power Energy Syst. 2014, 63, 523–533. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Ye, L.; Fang, J. A coordinated dispatch method with pumped-storage and battery-storage for compensating the variation of wind power. Prot. Control. Mod. Power Syst. 2018, 3, 21–34. [Google Scholar] [CrossRef]
- Lu, R.; Ding, T.; Qin, B.; Ma, J.; Fang, X.; Dong, Z. Multi-Stage Stochastic Programming to Joint Economic Dispatch for Energy and Reserve with Uncertain Renewable Energy. IEEE Trans. Sustain. Energy 2019, 1. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Ghaoui, L.E.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Ben-Tal, A.; Den Hertog, D.; De Waegenaere, A.; Melenberg, B.; Rennen, G. Robust Solutions of Optimization Problems Affected by Uncertain Probabilities. Manag. Sci. 2013, 59, 341–357. [Google Scholar] [CrossRef]
- Noureldeen, O.; Hamdan, I. Design of robust intelligent protection technique for large-scale grid-connected wind farm. Prot. Control Mod. Power Syst. 2018, 3, 169–182. [Google Scholar] [CrossRef]
- Moreira, A.; Street, A.; Arroyo, J.M. Energy and reserve scheduling under correlated nodal demand uncertainty: An adjustable robust optimization approach. Int. J. Electr. Power Energy Syst. 2015, 72, 91–98. [Google Scholar] [CrossRef]
- Wiesemann, W.; Kuhn, D.; Sim, M. Distributionally Robust Convex Optimization. Oper. Res. 2014, 62, 1358–1376. [Google Scholar] [CrossRef]
- Tong, X.; Luo, X.; Yang, H.; Zhang, L. A distributionally robust optimization-based risk-limiting dispatch in power system under moment uncertainty. Int. Trans. Electr. Energy Syst. 2017, 27, e2343. [Google Scholar] [CrossRef]
- Zare, A.; Chung, C.Y.; Zhan, J.; Faried, S.O. A Distributionally Robust Chance-Constrained MILP Model for Multistage Distribution System Planning with Uncertain Renewables and Loads. IEEE Trans. Power Syst. 2018, 33, 5248–5262. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, S.; Erdogan, S.A. Distributionally robust appointment scheduling with moment-based ambiguity set. Oper. Res. Lett. 2017, 45, 139–144. [Google Scholar] [CrossRef]
- Duan, C.; Lin, J.; Fang, W.; Jiang, L. Data-driven Distributionally Robust Energy-Reserve-Storage Dispatch. IEEE Trans. Ind. Inform. 2017, 14, 2826–2836. [Google Scholar] [CrossRef]
- Li, B.; Jiang, R.; Mathieu, J.L. Distributionally robust risk-constrained optimal power flow using moment and unimodality information. In Proceedings of the 2016 IEEE 55th Conference on Decision & Control, Las Vegas, NV, USA, 12–14 December 2016. [Google Scholar]
- Ghahramani, M.; Nazari-Heris, M.; Zare, K.; Mohammadi-Ivatloo, B. Energy and reserve management of a smart distribution system by incorporating responsive-loads/battery/wind turbines considering uncertain parameters. Energy 2019, 183, 205–219. [Google Scholar] [CrossRef]
- Amari, S.I.; Karakida, R.; Oizumi, M. Information Geometry Connecting Wasserstein Distance and Kullback-Leibler Divergence via the Entropy-Relaxed Transportation Problem. Inf. Geom. 2017, 1, 1–25. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Chao, D.; Guo, J. Data-driven distributionally robust reserve and energy scheduling over Wasserstein balls. IET Gener. Transm. Distrib. 2018, 12, 178–189. [Google Scholar]
- Hanasusanto, G.A.; Kuhn, D. Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls. Oper. Res. 2018, 2017, 1698. [Google Scholar] [CrossRef]
- Hou, W.; Zhu, W.; Wei, H.; Hiep, T. Data-driven affinely adjustable distributionally robust framework for unit commitment based on Wasserstein metric. IET Gener. Transm. Distrib. 2019, 13, 890–895. [Google Scholar] [CrossRef]
- Ning, C.; You, F. Data-driven Wasserstein distributionally robust optimization for biomass with agricultural waste-to-energy network design under uncertainty. Appl. Energy 2019, 255, 113857. [Google Scholar] [CrossRef]
- Zhu, R.; Wei, H.; Bai, B. Wasserstein Metric Based Distributionally Robust Approximate Framework for Unit Commitment. IEEE Trans. Power Syst. 2019, 34, 2991–3001. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Q.; Sun, H.; Li, Z. A Distributionally Robust Optimization Model for Unit Commitment Based on Kullback-Leibler Divergence. IEEE Trans. Power Syst. 2018, 33, 5147–5160. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Zhang, B. A Kullback-Leibler Divergence-based Distributionally Robust Optimization Model for Heat Pump Day-ahead Operational Schedule in Distribution Networks. IET Gener. Transm. Distrib. 2017, 12, 3136–3144. [Google Scholar] [CrossRef]
- Bakdi, A.; Bounoua, W.; Mekhilef, S.; Halab, L.M. Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV. Energy 2019. [Google Scholar] [CrossRef]
- Li, Y.; Miao, S.; Zhang, S.; Yin, B.; Wang, J. A reserve capacity model of AA-CAES for power system optimal joint energy and reserve scheduling. Int. J. Electr. Power Energy Syst. 2019, 104, 279–290. [Google Scholar] [CrossRef]
- Wei, W.; Liu, F.; Mei, S. Distributionally Robust Co-Optimization of Energy and Reserve Dispatch. IEEE Trans. Sustain. Energy 2016, 7, 289–300. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, J. Uncertainty Sets for Robust Unit Commitment. IEEE Trans. Power Syst. 2014, 29, 1439–1440. [Google Scholar] [CrossRef]
- Tsybakov, A.B. Introduction to Nonparametric Estimation; Springer: Berlin, Germany, 2009. [Google Scholar]
- Xu, X.; Yan, Z.; Shahidehpour, M.; Li, Z.; Yang, M.; Kong, X. Data-Driven Risk-Averse Two-Stage Optimal Stochastic Scheduling of Energy and Reserve with Correlated Wind Power. IEEE Trans. Sustain. Energy 2019, 1. [Google Scholar] [CrossRef]
- Heitsch, H.; Römisch, W. Scenario Reduction Algorithms in Stochastic Programming. Comput. Optim. Appl. 2003, 24, 187–206. [Google Scholar] [CrossRef]
- Hu, Z.; Hong, J. Kullback-Leibler Divergence Constrained Distributionally Robust Optimization. Available online: http://personal.cb.cityu.edu.hk/jeffhong/Papers/HuHong2013_technicalreport.pdf (accessed on 30 September 2019).
- Liu, M.; Cui, C.; Tong, X.; Dai, Y. Algorithms, softwares and recent developments of mixed integer nonlinear programming. Sci. Sin. Math. 2016, 46, 1–20. (In Chinese) [Google Scholar] [CrossRef]
RO | SO | DRO | ||
---|---|---|---|---|
First-stage objective value ($) | Generation cost ($) | 5351.53 | 4927.80 | 4869.58 |
Reserve cost ($) | 124.71 | 140.95 | 174.39 | |
Second-stage objective value ($) | 685.94 | 412.62 | 538.75 | |
Total objective value ($) | 6162.18 | 5481.37 | 5582.72 |
Number of Scenarios | Confidence Level | Objective Value ($) |
---|---|---|
500 | 0.9 | 63,497.43 |
500 | 0.95 | 63,510.08 |
500 | 0.98 | 63,531.71 |
RO | SO | DRO | |
---|---|---|---|
Generation cost ($) | 63,502.81 | 62,420.51 | 62,453.61 |
Reserve cost ($) | 525.50 | 282.21 | 536.57 |
Re-dispatch cost ($) | 2666.52 | 579.64 | 519.90 |
Total cost ($) | 66,694.83 | 63,282.36 | 63,510.08 |
Bus | RO | SO | DRO | |
Up reserve (MW) | 10 | 0 | 0 | 74.29 |
65 | 110.87 | 80 | 98.99 | |
66 | 80 | 72.76 | 80 | |
69 | 80.99 | 60 | 18.71 | |
Down reserve (MW) | 65 | 168 | 163.06 | 168 |
66 | 130.62 | 0 | 108.43 | |
87 | 12.02 | 17.51 | 34.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Han, D.; Sun, W.; Tian, K. Distributionally Robust Model of Energy and Reserve Dispatch Based on Kullback–Leibler Divergence. Electronics 2019, 8, 1454. https://doi.org/10.3390/electronics8121454
Yang C, Han D, Sun W, Tian K. Distributionally Robust Model of Energy and Reserve Dispatch Based on Kullback–Leibler Divergence. Electronics. 2019; 8(12):1454. https://doi.org/10.3390/electronics8121454
Chicago/Turabian StyleYang, Ce, Dong Han, Weiqing Sun, and Kunpeng Tian. 2019. "Distributionally Robust Model of Energy and Reserve Dispatch Based on Kullback–Leibler Divergence" Electronics 8, no. 12: 1454. https://doi.org/10.3390/electronics8121454
APA StyleYang, C., Han, D., Sun, W., & Tian, K. (2019). Distributionally Robust Model of Energy and Reserve Dispatch Based on Kullback–Leibler Divergence. Electronics, 8(12), 1454. https://doi.org/10.3390/electronics8121454