Human Limb Motion Detection with Novel Flexible Capacitive Angle Sensor Based on Conductive Textile
Abstract
:1. Introduction
2. Detection Principle and Fabrication of the NFCAS
2.1. Detection Principle of the NFCAS
2.2. Fabrication of the NFCAS
3. Experiments and Results
3.1. Basic Experiments
3.1.1. Calibration Experiment and Simulation Experiments
3.1.2. Experiments of Forearm Rotation and Arm Muscle Deformation
3.2. Pull-Ups Experiment and Push-Ups Experiment
3.2.1. Pull-Ups Experiment
3.2.2. Push-Ups Experiment
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two dimensional |
3D | Three dimensional |
EEL | Exciting electrode layer |
EEP | Exciting electrode plate |
ESL | Exciting shield layer |
FEA | Finite element analysis |
GL | Ground layer |
IMU | Inertial measurement units |
M-IMU | Magneto and inertial measurement unit |
NFCAS | Novel flexible capacitive angle sensor |
SEL | Sensing electrode layer |
SEP | Sensing electrode plate |
SSL | Sensing shield layer |
References
- Chuang, C.H.; Chen, Y.N.; Deng, M.S.; Fan, K.C. Gesture Recognition Based on Kinect. In Proceedings of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Chengdu, China, 19–22 June 2016. [Google Scholar] [CrossRef]
- Kurillo, G.; Chen, A.; Bajcsy, R.; Han, J.J. Evaluation of upper extremity reachable workspace using Kinect camera. Technol. Health Care 2013, 21, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Haschke, R.; Büscher, G.; Ciotti, S.; Carbonaro, N.; Tognetti, A. A multi-modal sensing glove for human manual-interaction studies. Electronics 2016, 5, 42. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 4, 6891–6909. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Chipperfield, A.; Clough, G. Wearable multimodal skin sensing for the diabetic foot. Electronics 2016, 5, 45. [Google Scholar] [CrossRef]
- Imtiaz, M.H.; Ramos-Garcia, R.I.; Senyurek, V.Y.; Tiffany, S.; Sazonov, E. Development of a Multisensory Wearable System for Monitoring Cigarette Smoking Behavior in Free-Living Conditions. Electronics 2017, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Ricci, L.; Formica, D.; Sparaci, L.; Lasorsa, F.R.; Taffoni, F.; Tamilia, E.; Guglielmelli, E. A New Calibration Methodology for Thorax and Upper Limbs Motion Capture in Children Using Magneto and Inertial Sensors. Sensors 2014, 1, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 9. [Google Scholar] [CrossRef]
- Shyr, T.W.; Shie, J.W.; Jiang, C.H.; Li, J.J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors 2014, 3, 4050–4059. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, H.; Ootaka, H.; Tada, M.; Hirata, I.; Kobayashi, F.; Kojima, F. Stretchable Strain Sensor with Anisotropy and Application for Joint Angle Measurement. IEEE Sens. J. 2016, 10, 3572–3579. [Google Scholar] [CrossRef]
- Kim, M.; Moon, W.; Yoon, E.; Lee, K.R. A new capacitive displacement sensor with high accuracy and long-range. Sens. Actuators A Phys. 2006, 130, 135–141. [Google Scholar] [CrossRef]
- Zhou, M.X.; Huang, Q.A.; Qin, M.; Zhou, W. A novel capacitive pressure sensor based on sandwich structures. J. Microelectromech. Syst. 2005, 14, 1272–1282. [Google Scholar] [CrossRef]
- Chiang, C.T.; Huang, Y.C. A Semi cylindrical Capacitive Sensor with Interface Circuit Used for Flow Rate Measurement. IEEE Sens. J. 2006, 6, 1564–1570. [Google Scholar] [CrossRef]
- Yang, Q.; Andrew, J.Y.; Simonton, J.; Yang, G.; Dohrmann, Y.; Kang, Z.; Li, Y.; Mo, J.; Zhang, F.Y. An inkjet-printed capacitive sensor for water level or quality monitoring: Investigated theoretically and experimentally. J. Mater. Chem. A 2017, 5, 17841–17847. [Google Scholar] [CrossRef]
- Kanaparthi, S. Pencil-drawn Paper-based Non-invasive and Wearable Capacitive Respiration Sensor. Electroanalysis 2017. [Google Scholar] [CrossRef]
- Patla, B.R. Small Angle Approximation for Non-parallel Plate Capacitors with Applications in Experimental Gravitation. arXiv 2012, arXiv:1208.2984. [Google Scholar]
- AD7746 Datasheet. Available online: http://www.alldatasheet.com/datasheet-pdf/pdf/539122/AD/AD7746.html (accessed on 1 August 2018).
- Qin, D.P. A simplified calculation of the electric field and the capacitance for a non-parallel plate capacitor. Coll. Phys. 1995, 1, 13–14. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.Y.; Fan, Y.M.; Zhang, G.X. The intelligent Capacitance-Micrometer. Electron. Meas. Technol. 2006, 4, 11–12. (In Chinese) [Google Scholar] [CrossRef]
- Tokarska, M.; Gniotek, K. Anisotropy of the electrical properties of flat textiles. J. Text. Inst. 2015, 106, 9–18. [Google Scholar] [CrossRef]
Reference | Type | Sensor | Advantages | Disadvantages |
---|---|---|---|---|
[1,2] | Non-contact | Kinect sensor | Without any dyskinesia | Limitation of applying situation |
[4,5,6] | Contact and non-flexible | IMU sensor | Small size, lightweight | Extra dyskinesia, post-processing |
[7] | Contact and non-flexible | M-IMU sensor | High precision | Extra dyskinesia, more complex, post-processing, susceptible to interference |
[3,5,9,10] | Contact and flexible | Strain resistive sensor | Flexible, light weight | Strain dyskinesia, discomfort |
[8] | Contact and flexible | Strain capacitive sensor | Elastic, thin, light weight | Strain dyskinesia, installation perplex, discomfort, removal processes |
Proposed | Contact and flexible | NFCAS | Flexible, easy-made, low extra dyskinesia | Limitation range of detection angle |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.-F.; Qiu, C.; Wang, Y.; Zhao, R.; Cai, Z.-P.; Zhao, X.-G.; He, S.-S.; Wang, F.; Wang, Q.; Li, J.-Q. Human Limb Motion Detection with Novel Flexible Capacitive Angle Sensor Based on Conductive Textile. Electronics 2018, 7, 192. https://doi.org/10.3390/electronics7090192
Wu J-F, Qiu C, Wang Y, Zhao R, Cai Z-P, Zhao X-G, He S-S, Wang F, Wang Q, Li J-Q. Human Limb Motion Detection with Novel Flexible Capacitive Angle Sensor Based on Conductive Textile. Electronics. 2018; 7(9):192. https://doi.org/10.3390/electronics7090192
Chicago/Turabian StyleWu, Jian-Feng, Chao Qiu, Yu Wang, Rui Zhao, Zhi-Peng Cai, Xin-Gang Zhao, Shang-Shang He, Feng Wang, Qi Wang, and Jian-Qing Li. 2018. "Human Limb Motion Detection with Novel Flexible Capacitive Angle Sensor Based on Conductive Textile" Electronics 7, no. 9: 192. https://doi.org/10.3390/electronics7090192
APA StyleWu, J.-F., Qiu, C., Wang, Y., Zhao, R., Cai, Z.-P., Zhao, X.-G., He, S.-S., Wang, F., Wang, Q., & Li, J.-Q. (2018). Human Limb Motion Detection with Novel Flexible Capacitive Angle Sensor Based on Conductive Textile. Electronics, 7(9), 192. https://doi.org/10.3390/electronics7090192