Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Process Description
- Bottom electrodes: The resist (graphical ink) was deposited as a patterned layer by flexographic printing with a speed of 10 m/min and 120 °C drying temperature, followed by Ag evaporation and lift-off for bottom electrode formation. The lift off process was performed in an ultrasonic bath using acetone as the solvent and a web speed of 0.3–0.5 m/min. Gate electrodes, bottom electrodes for the capacitors and wirings were manufactured in one step with a resolution varying from 25–70 µm for the gate to 1–3 mm for the wirings.
- Dielectric: The insulating PMMA layer was deposited by reverse gravure coating and subsequent drying (140 °C) and inline crosslinking with UV light with a speed of 8 m/min. The process was repeated twice in order to achieve a film thickness of approximately 800 nm for the dielectric layer.
- Top electrodes: The first resist (positive photoresist) was deposited by flexographic printing as a stripe, followed by reverse-side UV exposure through the substrate and development in a potassium hydroxide (KOH) solution for patterning the channel area. The gate was used as the photomask since the direct R2R registration is not accurate enough for such small µm-scale patterns. The speed of the photoresist printing process was 8 m/min, using a drying temperature of 140 °C. The reverse-side UV exposure step and development in KOH were performed at speeds of 10 and 2 m/min, respectively. The second resist (graphical ink) was printed by flexography with a speed of 10 m/min, and was used to pattern the rest of the top electrodes (capacitor and wirings). Here, the online registration was sufficient since the dimensions of the patterns are larger. Thus, we patterned the second resist directly in the printing process. The two resist layers were covered with a 100 nm thick Ag layer through R2R evaporation. Subsequently, a simultaneous lift-off process in acetone for both resists (UV-exposed photoresist and graphical ink) was used to finalize the metallization of the source and drain electrodes, top electrodes for the capacitors and the wirings.
- Semiconductor: The polymeric semiconductor was deposited by reverse gravure coating on top of the transistor structures with a speed of 4 m/min, using a drying temperature of 90 °C. The process was repeated three times in order to achieve a film thickness of 60 nm.
2.3. Characterization
3. Results and Discussion
3.1. Printing Process and Electrical Performance
Area | Channel Length (µm) | Channel Width (µm) | W/L Ratio | Yield (%) |
---|---|---|---|---|
Quarter 1 | 70 | 12,180 | 175 | 67 |
Quarter 2 | 60 | 12,140 | 200 | 63 |
Quarter 3 | 40 | 12,180 | 305 | 38 |
Quarter 4 | 25 | 12,220 | 490 | 0 |
All | - | - | - | 42 |
Statistical Value | Drain Current (A) | Mobility (cm2/(Vs)) | On/Off-Ratio | Subthreshold Slope (V) | Turn-on Voltage (V) |
---|---|---|---|---|---|
mean | 6.5 × 10−8 | 1.6 × 10−3 | 1300 | 0.89 | −2.1 |
std | 7.3 × 10−8 | 1.6 × 10−3 | 1400 | 0.48 | 1.2 |
min | 2.9 × 10−9 | 8.8 × 10−5 | 200 | 0.41 | −4.3 |
max | 2.7 × 10−7 | 5.3 × 10−3 | 5100 | 2.10 | −0.1 |
3.2. Cost Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, A.; Negishi, T.; Kimura, Y.; Ikeda, Y.; Takimiya, K.; Bisri, S.Z.; Iwasa, Y.; Shiro, T. Single-Crystal-Like Organic Thin-Film Transistors Fabricated from Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) Precursor-Polystyrene Blends. Adv. Mater. 2015, 27, 6606–6611. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Shi, K.; Yu, G.; Li, X.; Wang, H. Naphtho[1,2b;5,6b′]difuran-based donor–acceptor polymers for high performance organic field-effect transistors. RSC Adv. 2015, 5, 70319–70322. [Google Scholar] [CrossRef]
- Kang, B.; Lee, W.H.; Cho, K. Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 2013, 5, 2302–2315. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, C.; Khim, D.; Noh, Y.-Y. Development of high-performance printed organic field-effect transistors and integrated circuits. Phys. Chem. Chem. Phys. 2015, 17, 26553–26574. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Noh, Y.-Y. Printed organic thin-film transistor-based integrated circuits. Semicond. Sci. Technol. 2015, 30, 064003. [Google Scholar] [CrossRef]
- Koo, H.; Lee, W.; Choi, Y.; Sun, J.; Bak, J.; Noh, J.; Subramanian, V.; Azuma, Y.; Majima, Y.; Cho, G. Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Sci. Rep. 2015, 5, 14459. [Google Scholar] [CrossRef] [PubMed]
- Vilkman, M.; Hassinen, T.; Keränen, M.; Pretot, R.; van der Schaaf, P.; Ruotsalainen, T.; Sandberg, H.G.O. Fully roll-to-roll processed organic top gate transistors using a printable etchant for bottom electrode patterning. Org. Electron. 2015, 20, 8–14. [Google Scholar] [CrossRef]
- Bollström, R.; Tobjörk, D.; Dolietis, P.; Salminen, P.; Preston, J.; Österbacka, R.; Toivakka, M. Printability of functional inks on multilayer curtain coated paper. Chem. Eng. Process. 2013, 68, 13–20. [Google Scholar] [CrossRef]
- Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fügmann, U.; Hahn, U.; Hübler, A.C. Uniformity of fully gravure printed organic field-effect transistors. Mater. Sci. Eng. B 2010, 170, 93–98. [Google Scholar] [CrossRef]
- Huebler, A.C.; Doetz, F.; Kempa, H.; Katz, H.E.; Bartzsch, M.; Brandt, N.; Hennig, I.; Fuegmann, U.; Vaidyanathan, S.; Granstrom, J.; et al. Ring oscillator fabricated completely by means of mass-printing technologies. Org. Electron. Phys. Mater. Appl. 2007, 8, 480–486. [Google Scholar] [CrossRef]
- Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.D.; et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 2010, 57, 571–580. [Google Scholar] [CrossRef]
- Moonen, P.F.; Yakimets, I.; Huskens, J. Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 2012, 24, 5526–5541. [Google Scholar] [CrossRef] [PubMed]
- Gold, H.; Haase, A.; Fian, A.; Prietl, C.; Striedinger, B.; Zanella, F.; Marjanović, N.; Ferrini, R.; Ring, J.; Lee, K.-D.; et al. Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org. Electron. 2015, 22, 140–146. [Google Scholar] [CrossRef]
- Kang, H.; Kitsomboonloha, R.; Ulmer, K.; Stecker, L.; Grau, G.; Jang, J.; Subramanian, V. Megahertz-class printed high mobility organic thin-film transistors and inverters on plastic using attoliter-scale high-speed gravure-printed sub-5μm gate electrodes. Org. Electron. 2014, 15, 3639–3647. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Jung, S.-W.; Khim, D.; Kim, J.; Kim, D.-Y.; Koo, J.B.; Quinn, J.R.; Facchetti, A.; You, I.-K.; Noh, Y.-Y. Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Org. Electron. 2013, 14, 1407–1418. [Google Scholar] [CrossRef]
- Rothländer, T.; Fian, A.; Kraxner, J.; Grogger, W.; Gold, H.; Haase, A.; Stadlober, B. Channel length variation in self-aligned, nanoimprint lithography structured OTFTs. Org. Electron. 2014, 15, 3274–3281. [Google Scholar] [CrossRef]
- Noh, Y.; Zhao, N.I.; Caironi, M.; Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2007, 2, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-Y.; Subramanian, V. All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Jussila, S.; Puustinen, M.; Hassinen, T.; Olkkonen, J.; Sandberg, H.G.O.; Solehmainen, K. Self-aligned patterning method of poly(aniline) for organic field-effect transistor gate electrode. Org. Electron. 2012, 13, 1308–1314. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilkman, M.; Ruotsalainen, T.; Solehmainen, K.; Jansson, E.; Hiitola-Keinänen, J. Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors. Electronics 2016, 5, 2. https://doi.org/10.3390/electronics5010002
Vilkman M, Ruotsalainen T, Solehmainen K, Jansson E, Hiitola-Keinänen J. Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors. Electronics. 2016; 5(1):2. https://doi.org/10.3390/electronics5010002
Chicago/Turabian StyleVilkman, Marja, Teemu Ruotsalainen, Kimmo Solehmainen, Elina Jansson, and Johanna Hiitola-Keinänen. 2016. "Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors" Electronics 5, no. 1: 2. https://doi.org/10.3390/electronics5010002
APA StyleVilkman, M., Ruotsalainen, T., Solehmainen, K., Jansson, E., & Hiitola-Keinänen, J. (2016). Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors. Electronics, 5(1), 2. https://doi.org/10.3390/electronics5010002