Design and Realization of Dynamically Adjustable Multi-Pulse Real-Time Coherent Integration System
Abstract
1. Introduction
2. Overall System Logic Design
2.1. BRAM Data Transfer Module
2.2. AD9361 Data Driver Module Design
2.3. Data Storage and Coherent Integration Module
2.3.1. Data Write Module
2.3.2. Coherent Integration Module
2.3.3. Data Computing Module
2.4. Ethernet Data Transfer Module
2.5. GUI Interface and Operation
3. System Test Results
3.1. Single Tone Signal Testing
3.2. LFM Signal Testing
3.3. Hardware Resource and Power Analysis
4. Discussion
4.1. Performance Comparison
4.2. Robustness in Realistic Environments
4.3. Scalability Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASIC | Application-Specific Integrated Circuit |
| AXI | Advanced eXtensible Interface |
| BRAM | Block RAM |
| CPU | Central Processing Unit |
| DDR | Double Data Rate |
| DSP | Digital Signal Processor |
| FIFO | First-In, First-Out |
| FPGA | Field-Programmable Gate Array |
| FSM | Finite State Machine |
| GUI | Graphical User Interface |
| ILA | Integrated Logic Analyzer |
| LFM | Linear Frequency Modulation |
| LVDS | Low-Voltage Differential Signaling |
| MAC | Multiply-Accumulate |
| MTU | Maximum Transmission Unit |
| PHY | Physical Layer |
| PL | Programmable Logic |
| RGMII | Reduced Gigabit Media Independent Interface |
| RX | Receive |
| SPI | Serial Peripheral Interface |
| TCP/IP | Transmission Control Protocol/Internet Protocol |
| TX | Transmit |
| UART | Universal Asynchronous Receiver-Transmitter |
| UDP | User Datagram Protocol |
References
- Kannanthara, J.; Griffiths, D.; Jahangir, M.; Jones, J.M.; Baker, C.J.; Antoniou, M.; Bell, C.J.; White, H.; Bongs, K.; Singh, Y. Whole system radar modelling: Simulation and validation. IET Radar Sonar Navig. 2023, 17, 1050–1060. [Google Scholar] [CrossRef]
- Luong, D.; Balaji, B. Quantum two-mode squeezing radar and noise radar: Covariance matrices for signal processing. IET Radar Sonar Navig. 2020, 14, 97–104. [Google Scholar] [CrossRef]
- Davis, M.E. Merrill I. Skolnik’s 50 year impact on radar development. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 57–59. [Google Scholar] [CrossRef]
- Gong, J.; Yan, J.; Li, D.; Chen, R. Comparison of radar signatures based on flight morphology for large birds and small birds. IET Radar Sonar Navig. 2020, 14, 1365–1369. [Google Scholar] [CrossRef]
- Sanchez-Rivas, D.; Rico-Ramirez, M.A. Towerpy: An open-source toolbox for processing polarimetric weather radar data. Environ. Model. Softw. 2023, 167, 105746. [Google Scholar] [CrossRef]
- Henry, D.; Aubert, H.; Galaup, P.; Véronèse, T. Dynamic estimation of the yield in precision viticulture from mobile millimeter-wave radar systems. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Wen, Q.; Cao, S. Radar range-doppler flow: A radar signal processing technique to enhance radar target classification. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 1519–1529. [Google Scholar] [CrossRef]
- Chaves, C.S.; Geschke, R.H.; Shargorodskyy, M.; Herschel, R.; Kose, S.; Leuchs, S.; Krebs, C. Multisensor polarimetric MIMO radar network for disaster scenario detection of persons. IEEE Microw. Wirel. Compon. Lett. 2021, 32, 238–240. [Google Scholar] [CrossRef]
- Haynes, M.S.; Chapin, E.; Moussessian, A.; Madsen, S.N. Opposite-side ambiguities in radar sounding interferometry. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4640–4652. [Google Scholar] [CrossRef]
- Daum, F. A system engineering perspective on quantum radar. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; IEEE: New York, NY, USA, 2020; pp. 958–963. [Google Scholar]
- Raphaeli, D.; Bilik, I. Challenges in automotive MIMO radar calibration in anechoic chamber. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 6205–6214. [Google Scholar] [CrossRef]
- Vu, V.T.; Ivanenko, Y.; Pettersson, M.I. Phase error calculation caused by start-stop approximation in processing FMCW radar signals for SAR imaging. IEEE Access 2023, 11, 103669–103678. [Google Scholar] [CrossRef]
- Frazer, G.J.; Williams, C.G. Emerging Trends in Radar: HF Skywave Radar. IEEE Aerosp. Electron. Syst. Mag. 2025; in press. [Google Scholar] [CrossRef]
- Kumbul, U.; Uysal, F.; Vaucher, C.S.; Yarovoy, A. Automotive radar interference study for different radar waveform types. IET Radar Sonar Navig. 2022, 16, 564–577. [Google Scholar] [CrossRef]
- Gao, X.; Roy, S.; Xing, G. MIMO-SAR: A hierarchical high-resolution imaging algorithm for mmWave FMCW radar in autonomous driving. IEEE Trans. Veh. Technol. 2021, 70, 7322–7334. [Google Scholar] [CrossRef]
- Hoang, H.; John, M.; McEvoy, P.; Ammann, M.J. Calibration to mitigate near-field antennas effects for a MIMO radar imaging system. Sensors 2021, 21, 514. [Google Scholar] [CrossRef] [PubMed]
- Brigada, D.J.; Ryvkina, J. Radar-optimized wind turbine siting. IEEE Trans. Sustain. Energy 2021, 13, 403–413. [Google Scholar] [CrossRef]
- Ankel, M.; Tholén, M.; Bryllert, T.; Ulander, L.M.; Delsing, P. Implementation of a coherent real-time noise radar system. IET Radar Sonar Navig. 2024, 18, 1002–1013. [Google Scholar] [CrossRef]
- Mi, Y.; Zhang, Y.; Yang, J. Long-time coherent integration algorithm for high-speed maneuvering target detection. J. Appl. Remote Sens. 2023, 17, 026515. [Google Scholar] [CrossRef]















| Number of Pulses Coherent Integration/(pcs) | Number of Pulse Storage Frames/(pcs) | Initial Multi-Pulse Buffer Time/(ms) | Coherent Integration Data Output Delay/(µs) |
|---|---|---|---|
| 20 | 100 | 34 | 24 |
| 20 | 1000 | 340 | 24 |
| 40 | 100 | 68 | 33 |
| 40 | 1000 | 680 | 33 |
| Resource Type | Available | Used | Utilization Rate (%) |
|---|---|---|---|
| Logic Slice LUTs | 242,400 | 24,617 | 10.16 |
| Flip-Flops | 484,800 | 27,227 | 5.62 |
| Block RAM Tile | 600 | 293 | 48.83 |
| DSP48E1 Slices | 1920 | 8 | 0.42 |
| Global Clock Buffers | 32 | 12 | 37.5 |
| Architecture | DSP | ASIC | FPGA (BRAM) | Proposed FPGA (DDR4) |
|---|---|---|---|---|
| Latency | High (ms) | Ultra-Low (<20 µs) | Ultra-Low (<20 µs) | Low (33 µs) |
| Flexibility | High | None | Medium | High (Dynamic) |
| Scalability | High | Low | Low | High (Max 40 pulses) |
| Cost | Low | High | Medium | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bi, J.; Zhang, H.; Sun, L.; Jiang, Q. Design and Realization of Dynamically Adjustable Multi-Pulse Real-Time Coherent Integration System. Electronics 2026, 15, 397. https://doi.org/10.3390/electronics15020397
Bi J, Zhang H, Sun L, Jiang Q. Design and Realization of Dynamically Adjustable Multi-Pulse Real-Time Coherent Integration System. Electronics. 2026; 15(2):397. https://doi.org/10.3390/electronics15020397
Chicago/Turabian StyleBi, Jinrui, Hongyu Zhang, Lihua Sun, and Qingchao Jiang. 2026. "Design and Realization of Dynamically Adjustable Multi-Pulse Real-Time Coherent Integration System" Electronics 15, no. 2: 397. https://doi.org/10.3390/electronics15020397
APA StyleBi, J., Zhang, H., Sun, L., & Jiang, Q. (2026). Design and Realization of Dynamically Adjustable Multi-Pulse Real-Time Coherent Integration System. Electronics, 15(2), 397. https://doi.org/10.3390/electronics15020397

