Stacked Intelligent Metasurfaces: Key Technologies, Scenario Adaptation, and Future Directions
Abstract
1. Introduction
2. Stacked Intelligent Metasurface
2.1. Architecture and Principles
2.2. Performance Comparison
2.3. Prototype Hardware
3. Challenges
3.1. Beamforming
3.2. Channel Estimation
4. Application and Development
4.1. Application Prospects
4.1.1. ISAC
4.1.2. Low Earth Orbit Satellite Communications
4.1.3. Semantic Communication
4.1.4. UAV Communications
4.2. Development Trends
4.2.1. Integration with Machine Learning
4.2.2. Integration of Nonlinear Devices
5. Future Directions
5.1. Low-Complexity Design
5.2. Optimization Modeling
5.3. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Shi, E.; Zhang, J.; Du, H.; Ai, B.; Yuen, C.; Niyato, D.; Letaief, K.B.; Shen, X. RIS-aided cell-free massive MIMO systems for 6G: Fundamentals, system design, and applications. Proc. IEEE 2024, 112, 331–364. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Xu, C.; Li, H.; Ng, D.W.K.; Di Renzo, M.; Debbah, M.; Hanzo, L. Stacked intelligent metasurface-aided MIMO transceiver design. IEEE Wirel. Commun. 2024, 31, 123–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Xia, Y.; Xia, G.; Wang, Q. SIM-Assisted End-to-End Co-Frequency Co-Time Full-Duplex System. arXiv 2025, arXiv:2510.27270. [Google Scholar]
- Lin, X.; Rivenson, Y.; Yardimci, N.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef]
- Liu, H.; An, J.; Jia, X.; Gan, L.; Karagiannidis, G.K.; Clerckx, B.; Bennis, M.; Debbah, M.; Cui, T.J. Stacked intelligent metasurfaces for wireless communications: Applications and challenges. IEEE Wirel. Commun. 2025, 32, 46–53. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Guan, Y.L.; Di Renzo, M.; Debbah, M.; Poor, H.V.; Hanzo, L. Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces. IEEE J. Sel. Areas Commun. 2024, 42, 2786–2802. [Google Scholar]
- Li, Z.; An, J.; Yuen, C. Stacked Intelligent Metasurface-Enhanced Wideband Multiuser MIMO OFDM-IM Communications. arXiv 2025, arXiv:2509.22327. [Google Scholar]
- Gong, T.; Gavriilidis, P.; Ji, R.; Huang, C.; Alexandropoulos, G.C.; Wei, L.; Zhang, Z.; Debbah, M.; Poor, H.V.; Yuen, C. Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions. IEEE Commun. Surv. Tutor. 2023, 26, 196–257. [Google Scholar] [CrossRef]
- An, J.; Xu, C.; Ng, D.W.K.; Alexandropoulos, G.C.; Huang, C.; Yuen, C.; Hanzo, L. Stacked intelligent metasurfaces for efficient holographic MIMO communications in 6G. IEEE J. Sel. Areas Commun. 2023, 41, 2380–2396. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Chai, K.K.; Elkashlan, M. Active RIS versus passive RIS: Which is superior with the same power budget? IEEE Commun. Lett. 2022, 26, 1150–1154. [Google Scholar] [CrossRef]
- Gupta, P.K.; Tiwari, G.; Kumar, T.; Mukherjee, B. A Novel Dielectric Resonator Antenna with Applications in Wide-Angle Beam-Scanning Phased Array. Microw. Opt. Technol. Lett. 2025, 67, e70305. [Google Scholar]
- Wang, S.; Wang, W.; Chung, K.L.; Zheng, Y. An Orthogonal Quad-Beam Scanning Antenna Using 1-Bit Dielectric Modulation in Plasmonic Metamaterial Transmission Line for Traffic Monitoring Applications. IEEE Trans. Veh. Technol. 2025. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Z.N. Full-range amplitude–phase metacells for sidelobe suppression of metalens antenna using prior-knowledge-guided deep-learning-enabled synthesis. IEEE Trans. Antennas Propag. 2023, 71, 5036–5045. [Google Scholar]
- Quran, A.; Naser, S.; Tariq, M.; Alhussein, O.; Muhaidat, S. Max-Min Fairness in Stacked Intelligent Metasurface-Aided Rate Splitting Networks. arXiv 2025, arXiv:2505.08521. [Google Scholar]
- Perović, N.S.; Bahingayi, E.E.; Tran, L.N. Energy-efficient designs for SIM-based broadcast MIMO systems. IEEE Trans. Commun. 2025, 73, 15881–15894. [Google Scholar]
- Li, Q.; El-Hajjar, M.; Xu, C.; An, J.; Yuen, C.; Hanzo, L. Stacked intelligent metasurface-based transceiver design for near-field wideband systems. IEEE Trans. Commun. 2025; early access. [Google Scholar]
- Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S.; Kaklamani, D.I.; Venieris, I.S. Achievable rate optimization for large stacked intelligent metasurfaces based on statistical CSI. IEEE Wirel. Commun. Lett. 2024, 13, 2337–2341. [Google Scholar] [CrossRef]
- Rezvani, M.; Adve, R.; bin Sediq, A.; El-Keyi, A. Uplink wave-domain combiner for stacked intelligent metasurfaces accounting for hardware limitations. In Proceedings of the ICC 2025—IEEE International Conference on Communications, Montreal, QC, Canada, 8–12 June 2025; pp. 2424–2429. [Google Scholar]
- Chen, W.; Wen, C.-K.; Li, X.; Jin, S. Channel customization for joint Tx-RISs-Rx design in hybrid mmWave systems. IEEE Trans. Wirel. Commun. 2023, 22, 8304–8319. [Google Scholar]
- Yao, X.; An, J.; Gan, L.; Di Renzo, M.; Yuen, C. Channel estimation for stacked intelligent metasurface-assisted wireless networks. IEEE Wirel. Commun. Lett. 2024, 13, 1349–1353. [Google Scholar] [CrossRef]
- Ji, J.; Wang, C.-X.; Chen, S.; Huang, C.; Wu, X.; Björnson, E. Joint Low-Rank and Sparse Bayesian Channel Estimation for Ultra-Massive MIMO Communications. arXiv 2025, arXiv:2512.04470. [Google Scholar] [CrossRef]
- An, J.; Chaaban, A. Hybrid digital-wave domain channel estimator for stacked intelligent metasurface enabled multi-user MISO systems. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [Google Scholar]
- Lin, S.; An, J.; Gan, L.; Debbah, M.; Yuen, C. Stacked intelligent metasurface enabled LEO satellite communications relying on statistical CSI. IEEE Wirel. Commun. Lett. 2024, 13, 1295–1299. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Kourtessis, P.; Kaklamani, D.I.; Venieris, I.S. Channel Estimation for Stacked Intelligent Metasurfaces in Rician Fading Channels. IEEE Wirel. Commun. Lett. 2025, 14, 1411–1415. [Google Scholar] [CrossRef]
- Li, Z.; An, J.; Yuen, C. Fundamental trade-off in wideband stacked intelligent metasurface assisted OFDMA systems. arXiv 2025, arXiv:2509.08294. [Google Scholar] [CrossRef]
- Darsena, D.; Iudice, I.; Galdi, V.; Verde, F. Randomized Space-Time Coded Stacked Intelligent Metasurfaces for Massive Multiuser Downlink Connectivity. arXiv 2025, arXiv:2510.23440. [Google Scholar] [CrossRef]
- Zayat, A.; Abbas, O.; Markley, L.; Chaaban, A. Deep Complex-Valued Neural-Network Modeling and Optimization of Stacked Intelligent Surfaces. In Proceedings of the 2025 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Nice, France, 7–10 July 2025; pp. 1–6. [Google Scholar]
- Abrardo, A.; Bartoli, G.; Toccafondi, A. A novel comprehensive multiport network model for stacked intelligent metasurfaces (SIM) characterization and optimization. IEEE Trans. Commun. 2025, 73, 11559–11573. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Zhang, J.; Xiong, R.; Wan, K.; Qian, X.; Di Renzo, M.; Qiu, R.C. Multi-user ISAC through stacked intelligent metasurfaces: New algorithms and experiments. In Proceedings of the GLOBECOM 2024—2024 IEEE Global Communications Conference, Cape Town, South Africa, 8–12 December 2024; pp. 4442–4447. [Google Scholar]
- Li, S.; Zhang, F.; Mao, T.; Na, R.; Wang, Z.; Karagiannidis, G.K. Transmit beamforming design for ISAC with stacked intelligent metasurfaces. IEEE Trans. Veh. Technol. 2024, 74, 6767–6772. [Google Scholar] [CrossRef]
- Fadakar, A.; Molisch, A.F. Stacked Intelligent Metasurfaces for Multicarrier Cognitive Radio ISAC. arXiv 2025, arXiv:2511.13933. [Google Scholar] [CrossRef]
- Ranasinghe, K.R.R.; Sandoval, I.A.M.; de Abreu, G.T.F.; Alexandropoulos, G.S. Parametrized Stacked Intelligent Metasurfaces for Bistatic Integrated Sensing and Communications. arXiv 2025, arXiv:2504.20661. [Google Scholar] [CrossRef]
- An, J.; Di Renzo, M.; Debbah, M.; Poor, H.V.; Yuen, C. Stacked intelligent metasurfaces for multiuser downlink beamforming in the wave domain. IEEE Trans. Wirel. Commun. 2025, 24, 5525–5538. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Shi, E.; Liu, Z.; Liu, J.; Zheng, K.; Ai, B. Joint SIM configuration and power allocation for stacked intelligent metasurface-assisted MU-MISO systems with TD3. In Proceedings of the GLOBECOM 2024—2024 IEEE Global Communications Conference, Cape Town, South Africa, 8–12 December 2024; pp. 3255–3260. [Google Scholar]
- Jia, X.; An, J.; Liu, H.; Gan, L.; Di Renzo, M.; Debbah, M.; Yuen, C. Stacked intelligent metasurface enabled near-field multiuser beamfocusing in the wave domain. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar]
- Hashida, H.; Di, B. Precoding-free Hierarchical Rate-Splitting Multiple Access via Stacked Intelligent Metasurface. arXiv 2025, arXiv:2510.24246. [Google Scholar]
- Shi, E.; Zhang, J.; Zhu, Y.; An, J.; Yuen, C.; Ai, B. Uplink performance of stacked intelligent metasurface-enhanced cell-free massive MIMO systems. IEEE Trans. Wirel. Commun. 2025, 24, 3731–3746. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; An, J.; Yuen, C. Onboard terrain classification via stacked intelligent metasurface-diffractive deep neural networks from SAR level-0 raw data. arXiv 2025, arXiv:2503.13488. [Google Scholar]
- Ranasinghe, K.R.R.; Rou, H.S.; Sandoval, I.A.M.; de Abreu, G.T.F.; Alexandropoulos, G.C. Metasurfaces-Integrated Doubly-Dispersive MIMO: Channel Modeling and Optimization. arXiv 2025, arXiv:2506.14985. [Google Scholar]
- Ranasinghe, K.R.R.; Sandoval, I.A.M.; Rou, H.S.; De Abreu, G.T.F.; Alexandropoulos, G.C. Doubly-Dispersive MIMO Channels with Stacked Intelligent Metasurfaces: Modeling, Parametrization, and Receiver Design. arXiv 2025, arXiv:2501.07724. [Google Scholar] [CrossRef]
- Niu, H.; An, J.; Papazafeiropoulos, A.; Gan, L.; Chatzinotas, S.; Debbah, M. Stacked intelligent metasurfaces for integrated sensing and communications. IEEE Wirel. Commun. Lett. 2024, 13, 2807–2811. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, K.; Qin, Y.; Yu, H.; Leng, S.; Yuen, C. Stacked Intelligent Metasurfaces-Aided eVTOL Delay Sensitive Communications. arXiv 2025, arXiv:2507.06632. [Google Scholar]
- Ma, Z.; Zhang, R.; Ai, B.; Lian, Z.; Zeng, L.; Niyato, D.; Peng, Y. Deep reinforcement learning for energy efficiency maximization in RSMA-IRS-assisted ISAC system. IEEE Trans. Veh. Technol. 2025, 74, 18273–18278. [Google Scholar] [CrossRef]
- Saadat Yeganeh, R.; Behroozi, H.; Omidi, M.J.; Robat Mili, M.; Jorswieck, E.A.; Chatzinotas, S. Enhancing Energy and Spectral Efficiency in IoT-Cellular Networks via Active SIM-Equipped LEO Satellites. arXiv 2025, arXiv:2508.17149. [Google Scholar]
- Huang, G.; An, J.; Gan, L.; Niyato, D.; Debbah, M.; Cui, T.J. Stacked Intelligent Metasurfaces for Multi-Modal Semantic Communications. arXiv 2025, arXiv:2506.12368. [Google Scholar] [CrossRef]
- Huang, G.; An, J.; Yang, Z.; Gan, L.; Bennis, M.; Debbah, M. Stacked intelligent metasurfaces for task-oriented semantic communications. IEEE Wirel. Commun. Lett. 2024, 14, 310–314. [Google Scholar] [CrossRef]
- He, B.; Chen, Z.; Luo, J.; Liu, C.; Wang, S.; Wang, S.; Quek, T.Q.S. Towards Secure Semantic Transmission In the Era of GenAI: A Diffusion-based Framework. arXiv 2025, arXiv:2505.05724. [Google Scholar]
- Xiong, K.; Chen, Z.; Xie, J.; Qin, Y.; Leng, S.; Yuen, C. Digital Twin-based SIM Communication and Flight Control for Advanced Air Mobility. IEEE Trans. Netw. Sci. Eng. 2025, 13, 728–744. [Google Scholar] [CrossRef]
- Sun, G.; Fan, M.; Zhang, L.; Pan, H.; Li, J.; Zhang, C.; Li, Y.; Zhao, C.; Yuen, C. Generative AI-enhanced Low-Altitude UAV-Mounted Stacked Intelligent Metasurfaces. arXiv 2025, arXiv:2506.23488. [Google Scholar]
- Fan, M.; Sun, G.; Pan, H.; Wang, J.; An, J.; Du, H.; Yuen, C. Joint Association and Phase Shifts Design for UAV-mounted Stacked Intelligent Metasurfaces-assisted Communications. arXiv 2025, arXiv:2508.00616. [Google Scholar]
- Ma, Z.; Liang, Y.; Zhu, Q.; Zheng, J.; Lian, Z.; Zeng, L.; Fu, C.; Peng, Y.; Ai, B. Hybrid-RIS-Assisted Cellular ISAC Networks for UAV-Enabled Low-Altitude Economy via Deep Reinforcement Learning with Mixture-of-Experts. IEEE Trans. Cogn. Commun. Netw. 2025, 12, 3875–3888. [Google Scholar] [CrossRef]
- Stylianopoulos, K.; Alexandropoulos, G.C. Integrating Stacked Intelligent Metasurfaces and Power Control for Dynamic Edge Inference via Over-The-Air Neural Networks. arXiv 2025, arXiv:2509.18906. [Google Scholar] [CrossRef]
- Mengu, D.; Luo, Y.; Rivenson, Y.; Ozcan, A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 3700114. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; An, J.; Wu, T.; Chen, J.; Zhao, Y.; Guan, Y.L.; Di Renzo, M.; Debbah, M.; Karagiannidis, G.K.; Poor, H.V.; et al. Introducing meta-fiber into stacked intelligent metasurfaces for MIMO communications: A low-complexity design with only two layers. IEEE Trans. Wirel. Commun. 2025. [Google Scholar] [CrossRef]
- Shi, E.; Zhang, J.; An, J.; Zhang, G.; Liu, Z.; Yuen, C.; Ai, B. Joint AP-UE association and precoding for SIM-aided cell-free massive MIMO systems. IEEE Trans. Wirel. Commun. 2025, 24, 5352–5367. [Google Scholar]
- Li, Z.; An, J.; Yuen, C. Stacked intelligent metasurfaces for fully-analog wideband beamforming design. In Proceedings of the 2024 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapre, 21–23 August 2024; pp. 1–5. [Google Scholar]
- Yahya, H.; Nerini, M.; Clerckx, B.; Debbah, M. T-Parameters Based Modeling for Stacked Intelligent Metasurfaces: Tractable and Physically Consistent Model. IEEE Wirel. Commun. Lett. 2025, 14, 2149–2153. [Google Scholar] [CrossRef]
- Niu, H.; Xiao, Y.; Lei, X.; Chen, J.; Xiao, Z.; Li, M.; Yuen, C. A survey on artificial noise for physical layer security: Opportunities, technologies, guidelines, advances, and trends. IEEE Commun. Surv. Tutor. 2025, 28, 341–381. [Google Scholar] [CrossRef]







| Comparison Dimension | RCG Algorithm | SCA Algorithm | UPGD-Net Algorithm |
|---|---|---|---|
| Optimization Accuracy | Moderately excellent (approaching local optimality) | High | High (close to global optimal solution) |
| Computational Complexity | Low/moderate: single iteration complexity is , with no training overhead | Moderate: single iteration complexity is alternatively optimizes multiple variables | High for offline training: ; low for online inference (fixed T operations) |
| Convergence Time | Moderate: converges in 25–50 iterations | Moderately slow: converges in 30–100 iterations | Extremely fast: no iteration in online inference, outputs in real time |
| Core Advantages | Balances accuracy and complexity; no training required; strong stability | Supports multi-variable collaborative optimization; high upper limit of accuracy | Low latency adapts to dynamic scenarios; frame-level real-time response |
| Core Limitations | Only optimizes the single variable of phase-shift vector | Alternating optimization leads to long single-iteration time | Relies on offline training; generalization is affected by sample coverage |
| Application Scenarios | IRS-aided multi-user MIMO, static/slow-varying channels, single-variable phase-shift optimization | SIM-aided broadcast MIMO, slow-varying channels, energy efficiency/sum rate optimization, multi-variable collaboration | SIM-enhanced wideband OFDM-IM, dynamic subcarrier scheduling, low-latency BER optimization |
| Reference | Main Research Task | Objective Function | Optimization Direction | Features |
|---|---|---|---|---|
| [21] | Channel Estimation | MSE | Subspace Projection Estimation | Statistical CSI |
| [23] | Channel Estimation | NMSE | Gradient Descent | Low-Rank Channel Reduction Optimization |
| [24] | Beamforming | Ergodic Sum Rate | AO | Statistical CSI, User Grouping, Antenna Selection |
| [17] | Beamforming | Spectral Efficiency | Layer-by-Layer Iterative Optimization | Iterative Water-Filling Power Allocation |
| [25] | Beamforming | NMSE | Projected Gradient Descent | CNN |
| [26] | Beamforming | Channel Fitting with NMSE Evaluation | AO | PCCP, MILP Subcarrier Allocation |
| [27] | Beamforming | Time-averaged Sum Rate | Projected Gradient Descent | Opportunistic User Scheduling with Partial CSI |
| [28] | Beamforming | SER, Spectral Efficiency | Gradient Descent | CV-NN, SVD |
| [29] | Beamforming | MSE | Gradient Descent | Z-parameter Modeling, Diagonal T-RIS Architecture |
| [30] | Beamforming | Target Estimation CRB | MAO | SDR |
| [31] | Beamforming | Time-averaged Sum Rate | Gradient Descent | |
| [32] | ISAC | SU Localization BCRB | Gradient Descent, AO | DNN Backpropagation |
| [33] | ISAC | Weakest Channel Path Gain, MSE | Gradient Ascent | PDA-Based Sparse Recovery |
| [8] | Multi-user Precoding | BER | Gradient Descent | Iterative Water-Filling Power Allocation |
| [34] | Multi-user Precoding | Sum Rate | Projected Gradient Ascent, AO | Water-Filling Algorithm |
| [35] | Multi-user Precoding | Sum Rate | TD3 | Continuous Action Spaces |
| [36] | Multi-user Precoding | NMSE, Sum Rate | Gradient Descent | Iterative Water-Filling Power Allocation |
| [37] | Multi-user Combination | Minimum User Rate | AO | SPSA, Local Greedy Refinement |
| [38] | Multi-user Combination | Sum Spectral Efficiency | Layer-wise Iterative Optimization | Statistical CSI, Greedy Iteration |
| [19] | Multi-user Combination | Sum Rate | Gradient Ascent | IPM |
| [15] | Power Allocation | Minimum User Rate | AO | SCA, RCG |
| [39] | Terrain Classification | Classification Accuracy, Recall Rate | Data Augmentation | Offline Phase Learning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, J.; Kong, J. Stacked Intelligent Metasurfaces: Key Technologies, Scenario Adaptation, and Future Directions. Electronics 2026, 15, 274. https://doi.org/10.3390/electronics15020274
Liu J, Kong J. Stacked Intelligent Metasurfaces: Key Technologies, Scenario Adaptation, and Future Directions. Electronics. 2026; 15(2):274. https://doi.org/10.3390/electronics15020274
Chicago/Turabian StyleLiu, Jiayi, and Jiacheng Kong. 2026. "Stacked Intelligent Metasurfaces: Key Technologies, Scenario Adaptation, and Future Directions" Electronics 15, no. 2: 274. https://doi.org/10.3390/electronics15020274
APA StyleLiu, J., & Kong, J. (2026). Stacked Intelligent Metasurfaces: Key Technologies, Scenario Adaptation, and Future Directions. Electronics, 15(2), 274. https://doi.org/10.3390/electronics15020274

