A 6–18 GHz Low-Noise Amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs Process
Abstract
:1. Introduction
2. LNA Circuit Design
2.1. Topology of the LNA
2.2. Resistive Feedback Technique
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shan, L.Q.; Hu, Y.T.; Zhang, F.H.; Chen, M. Resource Allocation for Multicarrier Communication in the Finite Blocklength Regime. IEEE Wirel. Commun. Lett. 2023, 12, 1771–1775. [Google Scholar] [CrossRef]
- Nikandish, G.; Yousefi, A.; Kalantari, M. A Broadband Multistage LNA With Bandwidth and Linearity Enhancement. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 834–836. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, G.-D.; Sun, D.; Huang, Y.; Lin, Z.; Liu, J. GaAs based MMIC LNA for X-band Applications. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 12–14 December 2022; pp. 1–3. [Google Scholar]
- Mesgari, B.; Saeedi, S.; Jannesari, A. Cell Weighting and Gate Inductive Peaking Techniques for Wideband Noise Suppression in Distributed Amplifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4507–4520. [Google Scholar] [CrossRef]
- Yan, X.; Luo, H.; Zhang, J.; Zhang, H.; Guo, Y. Design and Analysis of a Cascode Distributed LNA With Gain and Noise Improvement in 0.15-m GaAs pHEMT Technology. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4659–4663. [Google Scholar] [CrossRef]
- Li, N.; Feng, W.; Li, X. A CMOS 3-12-GHz Ultrawideband Low Noise Amplifier by Dual-Resonance Network. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 383–385. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hou, D.; Zhou, P.; Chen, Z.; Wang, L.; Xu, X.; Hong, W. A 1-27 GHz SiGe Low Noise Amplifier With 27-dB Peak Gain and 2.85 ± 1.45 dB NF. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 2629–2633. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. An Accurate Experimental Investigation of an Optical Sensing Microwave Amplifier. IEEE Sens. J. 2018, 18, 9214–9221. [Google Scholar] [CrossRef]
- Razavi, B. RF Microelectronics, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2011. [Google Scholar]
- Wang, L.; Cheng, Y.J. A 2-20-GHz Ultrawideband High-Gain Low-Noise Amplifier With Enhanced Stability. IEEE Microw. Wirel. Compon. Lett. 2024, 34, 415–418. [Google Scholar] [CrossRef]
- Li, J.X.; Yuan, Y.; Zeng, J.L.; He, D.; Yu, Z.J. A Broadband LNA With Multiple Bandwidth Enhancement Techniques. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 551–554. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, L.; Chen, F.-J.; Deng, X. A broadband GaAs pHEMT low noise driving amplifier with current reuse and self-biasing technique. Analog. Integr. Circuits Signal Process. 2019, 99, 191–198. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.S.; Fan, Y.H.; Yan, Y.P.; Liang, X.X. Design of a GaAs-Based Ka-Band Low Noise Amplifier MMIC with Gain Flatness Enhancement. Electronics 2023, 12, 2325. [Google Scholar] [CrossRef]
- Chen, Y.M.; Wang, Y.S.; Chiong, C.C.; Wang, H. A 21.5-50 GHz Low Noise Amplifier in 0.15-μm GaAs pHEMT Process for Radio Astronomical Receiver System. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), Electr Network, Brisbane, QLD, Australia, 28 November–1 December 2021; pp. 7–9. [Google Scholar]
- Babenko, A.A.; Lasser, G.; Popovic, Z. 0.01-22-GHz Feedback-Stabilized Single-Supply GaAs Cascode Distributed Amplifiers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1291–1294. [Google Scholar] [CrossRef]
Reference | Technique | Freq. (GHz) | Gain (dB) | NF (dB) | OP1dB (dBm) | PDC (mW) | Area (mm2) | FOM |
---|---|---|---|---|---|---|---|---|
[5] | 0.15-μm GaAs | 2–42 | 14.1 | 3 | 10 | 129 | 1.53 | 21.86 |
[11] | 0.15-µm GaAs | 0.5–24 | 24.7 | 1.7-2.8 | 10 | 212 | 1.47 | 27.38 |
[12] | 0.15-μm GaAs | 17–28 | 17 | 2.2 | 6 | 30 | 1.5 | 20.66 |
[13] | 0.15-μm GaAs | 32–40 | 21.5 | 2.2 | 10 | 56 | 1.35 | 25.59 |
[14] | 0.15-μm GaAs | 22.5–34 | 22.5 | 3–4.5 | −2.5 | 36 | 2.5 | 1.44 |
[15] | 0.15-μm GaAs | 0.01–22 | 23 | NA | 21 | NA | 3.75 | NA |
This Work | 0.15-μm GaAs | 6–18 | 25 | 2.3–2.9 | 21 | 720 | 2.16 | 35.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Men, T.; Cheng, B. A 6–18 GHz Low-Noise Amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs Process. Electronics 2025, 14, 1600. https://doi.org/10.3390/electronics14081600
Wang X, Men T, Cheng B. A 6–18 GHz Low-Noise Amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs Process. Electronics. 2025; 14(8):1600. https://doi.org/10.3390/electronics14081600
Chicago/Turabian StyleWang, Xiyang, Tao Men, and Buwen Cheng. 2025. "A 6–18 GHz Low-Noise Amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs Process" Electronics 14, no. 8: 1600. https://doi.org/10.3390/electronics14081600
APA StyleWang, X., Men, T., & Cheng, B. (2025). A 6–18 GHz Low-Noise Amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs Process. Electronics, 14(8), 1600. https://doi.org/10.3390/electronics14081600