A Wideband Orbital Angular Momentum Antenna Array Design for Wireless Communication
Abstract
:1. Introduction
2. Design Procedure
2.1. OAM Antennas Array Design Based on Rotating Cross-Dipoles
2.1.1. Broadband Cross-Dipole Rotating Array with Z-Shaped Parasitic Radiation Cells
2.1.2. Ring Step Metal Reflective Back Cavity
2.2. Bottom Feed Network Design
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Kang, L.; Wei, F.; Cai, Y.-M.; Yin, Y.-Z. A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3022–3025. [Google Scholar]
- Liu, D.; Gui, L.; Zhang, Z.; Chen, H.; Song, G.; Jiang, T. Multiplexed OAM wave communication with two-OAM-mode antenna system. IEEE Access 2019, 7, 4160–4166. [Google Scholar] [CrossRef]
- Lei, X.Y.; Cheng, Y.J. High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1357–1360. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Liu, Y.; Zhang, B.; Liu, Y.; Liu, Q.H. Realization of third-order OAM mode using ring patch antenna. IEEE Trans. Antennas Propag. 2020, 68, 7607–7611. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Yang, S.; Zhuo, K.; Ye, L.; Liu, Q.H. A reconfigurable second-Order OAM patch antenna with simple structure. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1531–1535. [Google Scholar] [CrossRef]
- Feng, P.-Y.; Qu, S.-W.; Yang, S. OAM-generating transmitarray antenna with circular phased array antenna feed. IEEE Trans. Antennas Propag. 2020, 68, 4540–4548. [Google Scholar] [CrossRef]
- Wu, J.; Fan, M.; Lu, X.; Hu, J.; Xie, G.; Huang, Z. Circularly polarized and linear polarized mode multiplexing OAM antenna using sequentially rotated technique. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1261–1265. [Google Scholar] [CrossRef]
- Qin, F.; Li, L.; Liu, Y.; Cheng, W.; Zhang, H. A four-mode OAM antenna array with equal divergence angle. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1941–1945. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, M.; Zhang, R.; Lei, M.; Gao, X.; Huang, S.; Bi, K. A wideband F-Shaped microstrip antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 829–832. [Google Scholar] [CrossRef]
- Khan, M.I.W.; Woo, J.; Yi, X.; Ibrahim, M.I.; Yazicigil, R.T.; Chandrakasan, A.P.; Han, R. A 0.31-THz orbital-angular-momentum (OAM) wave transceiver in CMOS with bits-to-OAM mode mapping. IEEE J. Solid-State Circuits 2022, 57, 1344–1357. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Moretti, M.; Wang, X.; Li, J. Orbital angular momentum waves: Generation, detection, and emerging applications. IEEE Commun. Surv. 2020, 22, 840–868. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, Y.; Li, X.; Gao, Y. Microwave sensing technology using orbital angular momentum overview of its advantages. IEEE Veh. Technol. Mag. 2019, 14, 112–118. [Google Scholar]
- Bu, X.; Zhang, Z.; Chen, L.; Liang, X.; Tang, H.; Wang, X. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 764–767. [Google Scholar]
- Hui, X.; Zheng, S.; Chen, Y.; Hu, Y.; Jin, X.; Chi, H.; Zhang, X. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci. Rep. 2015, 5, 10148. [Google Scholar]
- Liu, H.; Liu, K.; Cheng, Y.; Wang, H. Microwave vortex imaging based on dual coupled OAM beams. IEEE Sens. J. 2020, 20, 806–815. [Google Scholar]
- Liu, H.; Wang, Y.; Wang, J.; Liu, K.; Wang, H. Electromagnetic vortex enhanced imaging using fractional OAM beams. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 948–952. [Google Scholar]
- Wang, J.; Liu, K.; Cheng, Y.; Wang, H. Vortex SAR imaging method based on OAM beams design. IEEE Sens. J. 2019, 19, 11873–11879. [Google Scholar] [CrossRef]
- Yuan, T.; Cheng, Y.; Wang, H.; Qin, Y. Generation of OAM radio beams with modified uniform circular array antenna. Electron. Lett. 2016, 52, 19896–19897. [Google Scholar]
- Saitou, A.; Uchida, K.; Kitayama, K.; Ishikawa, R.; Honjo, K. Analysis of beamforming for OAM communication using loop antenna arrays and paraboloids. IEICE Trans. Commun. 2024, E107B, 776–784. [Google Scholar]
- Thidé, B.; Then, H.; Sjöholm, J.; Palmer, K.; Bergman, J.; Carozzi, T.D.; Istomin, Y.N.; Ibragimov, N.H.; Khamitova, R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 2007, 99, 087701. [Google Scholar] [CrossRef]
- Qin, F.; Zeng, L.; Liu, S.; Gu, C.; Liu, X.; Zhang, H. Dual-mode high-gain OAM array based on nested metasurface with simplified feeding network. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 59–63. [Google Scholar] [CrossRef]
- Yang, Z.; Bao, J.; Li, W.; Liu, B.; Wang, H.; Kang, L.; Shi, X.W. Broadband circularly polarized antenna with non-planar reflector. IEEE Access 2020, 8, 164407–164413. [Google Scholar]
- Shen, F.; Mu, J.; Guo, K.; Wang, S.; Guo, Z. Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1091–1095. [Google Scholar]
- Yuan, T.; Cheng, Y.; Wang, H.; Qin, Y. Mode characteristics of vortical radio wave generated by circular phased array: Theoretical and experimental results. IEEE Trans. Antennas Propag. 2017, 65, 688–695. [Google Scholar]
- Liu, K.; Liu, H.; Qin, Y.; Cheng, Y.; Wang, S.; Li, X.; Wang, H. Generation of OAM beams using phased array in the microwave band. IEEE Trans. Antennas Propag. 2016, 64, 3850–3857. [Google Scholar]
- Vedaee, A.; Mallahzadeh, A. A single-layer series-fed SIW slot array antenna generating two orbital angular momentum modes. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1261–1265. [Google Scholar]
- Rao, J.; Wang, C.; Yu, H.; Xu, G.; Ren, X.; Zhao, L.; Li, Y.; Huang, Z. Conical conformal OAM-generating transmitarray with high transmission double C-shaped grating metasurface. Opt. Express. 2024, 32, 34128–34140. [Google Scholar]
- Hayat, B.; Zhang, J.; Ishfaq, M.; Ahmad, S.; Khan, A.; Majeed, A. Broadband OAM vortex beams generating through transmitarray for millimeter wave applications. Opt. Express. 2025, 33, 10036–10046. [Google Scholar]
- Beccaria, M.; Dassano, G.; Pirinoli, P. Single-layer, multimode OAM reflectarray antennas. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 980–984. [Google Scholar]
- Han, L.; Zhu, Y.; Xu, Y.; Liu, Y.; Xie, W.; Xiong, B. Novel folded reflectarray and transmitarray antenna generating long nondiffractive bessel beams carrying OAM with integrated feed. IEEE Trans. Antennas Propag. 2024, 72, 4719–4728. [Google Scholar]
- Yang, Z.; Zhou, J.; Kang, L.; Liu, B.; Yang, G.; Shi, X. A closed-loop cross-dipole antenna array for wideband OAM communication. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2492–2496. [Google Scholar] [CrossRef]
- Zhu, C.; Xie, C.; Liu, L.; Ye, L.; Liu, Q.H. A method to design arbitrary-way multimodal OAM generator. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 987–991. [Google Scholar]
- Fouda, R.M.; Ebrahimi, A.; Baum, T.C.; Ghorbani, K. Experimental ber performance of quasi-circular array antenna for OAM communications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1350–1354. [Google Scholar]
- He, Y.; He, W.; Wong, H. A wideband circularly polarized cross-dipole antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 67–70. [Google Scholar]
- Yang, W.-J.; Pan, Y.-M.; Zheng, S.-Y. A compact broadband circularly polarized crossed-dipole antenna with a very low profile. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2130–2134. [Google Scholar]
- Jack, B.; Padgett, M.J.; Franke-Arnold, S. Angular diffraction. N. J. Phys. 2008, 10, 103013. [Google Scholar] [CrossRef]
- Yao, E.; Franke-Arnold, S.; Courtial, J.; Barnett, S.; Padgett, M. Fourier relationship between angular position and optical orbital angular momentum. Opt. Express. 2006, 14, 9071–9076. [Google Scholar]
- Tran, H.H.; Ta, S.X.; Park, I. Single-feed, wideband, circularly polarized, crossed bowtie dipole antenna for global navigation satellite systems. J. Electromagn. Eng. 2014, 14, 299–305. [Google Scholar]
- Dai, X.W.; Li, Z.; Ruan, H.; Yu, W.; Liu, L.; Luo, G.Q. An ultralow-profile folded transmitarray antenna with both-sides beam regulate for K-band circularly polarized OAM waves. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 142–146. [Google Scholar]
- Qin, F.; Cao, X.; Gu, C.; Bi, J.; Gao, S.; Cheng, W. Mode conversion of multimode OAM waves based on transmitted metasurface. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4373–4377. [Google Scholar]
- Liu, Q.; Chen, Z.N.; Liu, Y.; Li, F.; Chen, Y.; Mo, Z. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Trans. Antennas Propag. 2018, 66, 1796–1804. [Google Scholar] [CrossRef]
- Liu, W.; Deng, L.; Chen, L.; Zhang, C.; Li, S. A broadband high-gain low-profile folded transmitarray antenna for OAM generation. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4348–4352. [Google Scholar] [CrossRef]
- Naseri, H.; PourMohammadi, P.; Melouki, N.; Iqbal, A.; Denidni, T.A. A low-profile antenna system for generating reconfigurable OAM-carrying beams. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 402–406. [Google Scholar] [CrossRef]
Ref | Size () | Impendence Bandwidth | Peak Gain |
---|---|---|---|
[34] | 0.42 × 0.42 × 0.23 | (50.2%) | 6.8 dBi |
[38] | 0.45 × 0.45 × 0.23 | (51.8%) | 7.3 dBi |
[31] | 0.97 × 0.97 × 0.19 | (62.0%) | 6.9 dBi |
[39] | 7.5 × 7.5 × 1.9 | (8.4%) | 17.35 dBi |
[40] | 7.9 × 7.9 × 3.7 | (2.5%) | 13.5 dBi |
[41] | 1.4 × 1.4 × 0.08 | (21%) | 5.3 dBi |
[42] | 6.95 × 6.95 × 0.09 | (20%) | 20.5 dBi |
[43] | 1.7 × 2 × 0.007 | (2%) | 7.6 dBi |
This work | 1.21 × 1.21 × 0.22 | (61.6%) | 7.81 dBi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhang, K.; Zhang, J.; Liu, H.; Cao, Y.; Yan, S. A Wideband Orbital Angular Momentum Antenna Array Design for Wireless Communication. Electronics 2025, 14, 1601. https://doi.org/10.3390/electronics14081601
Yang Z, Zhang K, Zhang J, Liu H, Cao Y, Yan S. A Wideband Orbital Angular Momentum Antenna Array Design for Wireless Communication. Electronics. 2025; 14(8):1601. https://doi.org/10.3390/electronics14081601
Chicago/Turabian StyleYang, Zhanbiao, Kaiheng Zhang, Jiahao Zhang, Hongbo Liu, Yuanxi Cao, and Sen Yan. 2025. "A Wideband Orbital Angular Momentum Antenna Array Design for Wireless Communication" Electronics 14, no. 8: 1601. https://doi.org/10.3390/electronics14081601
APA StyleYang, Z., Zhang, K., Zhang, J., Liu, H., Cao, Y., & Yan, S. (2025). A Wideband Orbital Angular Momentum Antenna Array Design for Wireless Communication. Electronics, 14(8), 1601. https://doi.org/10.3390/electronics14081601