A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning
Abstract
:1. Introduction
Related Works
2. Methodology
2.1. Environment Structure
2.1.1. Classical Reward Function
2.1.2. Fuzzy Logic Reward Function
2.2. Agent Structure
Proximal Policy Optimization Algorithm (PPO)
Algorithm 1 Proximal Policy Optimization Algorithm. |
for episode: 1 → M do Initialize Reset environment and obtain for iteration: 1 → T do Get according to Compute end for Compute new weight by optimizing surrogate Update networks end for |
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Wang, H.; Xie, Y.; Guo, M. Path planning for multiple mobile robots under double-warehouse. Inf. Sci. 2014, 278, 357–379. [Google Scholar] [CrossRef]
- Kumar, N.V.; Kumar, C.S. Development of collision free path planning algorithm for warehouse mobile robot. Procedia Comput. Sci. 2018, 133, 456–463. [Google Scholar] [CrossRef]
- Alves, J.G.; Lizarralde, F.; Monteiro, J.C. Control Allocation for Wheeled Mobile Robots Subject to Input Saturation. IFAC—PapersOnLine 2020, 53, 3904–3909. [Google Scholar] [CrossRef]
- Qi, C.; Zhu, Y.; Song, C.; Cao, J.; Xiao, F.; Zhang, X.; Xu, Z.; Song, S. Self-supervised reinforcement learning-based energy management for a hybrid electric vehicle. J. Power Sources 2021, 514, 230584. [Google Scholar] [CrossRef]
- Jiang, P.; Song, S.; Huang, G. Attention-based meta-reinforcement learning for tracking control of AUV with time-varying dynamics. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6388–6401. [Google Scholar] [CrossRef]
- Song, R.; Jang, S.; Wang, Y.; Hanssens, D.M.; Suh, J. Reinforcement learning and risk preference in equity linked notes markets. J. Empir. Financ. 2021, 64, 224–246. [Google Scholar] [CrossRef]
- Wang, H.; Jing, J.; Wang, Q.; He, H.; Qi, X.; Lou, R. ETQ-learning: An improved Q-learning algorithm for path planning. Intell. Serv. Robot. 2024, 17, 1–15. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Liu, L. Exploring unknown environments: Motivated developmental learning for autonomous navigation of mobile robots. Intell. Serv. Robot. 2024, 17, 197–219. [Google Scholar] [CrossRef]
- Ganjeh-Alamdari, M.; Alikhani, R.; Perfilieva, I. Fuzzy logic approach in salt and pepper noise. Comput. Electr. Eng. 2022, 102, 108264. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Mayavan, T.; Manikandan, H. Prediction of mechanical characteristics of friction welded dissimilar EN 10028P 355 GH steel and AISI 430 steel joint by fuzzy logic analysis. Mater. Today Proc. 2022, 68, 2182–2188. [Google Scholar] [CrossRef]
- Mishra, D.K.; Thomas, A.; Kuruvilla, J.; Kalyanasundaram, P.; Prasad, K.R.; Haldorai, A. Design of mobile robot navigation controller using neuro-fuzzy logic system. Comput. Electr. Eng. 2022, 101, 108044. [Google Scholar] [CrossRef]
- Boztas, G.; Aydogmus, O. Implementation of Pure Pursuit Algorithm for Nonholonomic Mobile Robot using Robot Operating System. Balk. J. Electr. Comput. Eng. 2021, 9, 337–341. [Google Scholar] [CrossRef]
- Xu, L.; Cao, M.; Song, B. A New Approach to Smooth Path Planning of Mobile Robot Based on Quartic Bezier Transition Curve and Improved PSO Algorithm. Neurocomputing 2021, 473, 98–106. [Google Scholar] [CrossRef]
- Hou, W.; Xiong, Z.; Wang, C.; Chen, H. Enhanced ant colony algorithm with communication mechanism for mobile robot path planning. Robot. Auton. Syst. 2021, 148, 103949. [Google Scholar] [CrossRef]
- Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 2021, 156, 107230. [Google Scholar] [CrossRef]
- Deng, X.; Li, R.; Zhao, L.; Wang, K.; Gui, X. Multi-obstacle path planning and optimization for mobile robot. Expert Syst. Appl. 2021, 183, 115445. [Google Scholar] [CrossRef]
- Tripathy, H.K.; Mishra, S.; Thakkar, H.K.; Rai, D. CARE: A Collision-Aware Mobile Robot Navigation in Grid Environment using Improved Breadth First Search. Comput. Electr. Eng. 2021, 94, 107327. [Google Scholar] [CrossRef]
- Mylvaganam, T.; Sassano, M. Autonomous collision avoidance for wheeled mobile robots using a differential game approach. Eur. J. Control. 2018, 40, 53–61. [Google Scholar] [CrossRef]
- Li, H.; Savkin, A.V. An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments. Robot. Comput.-Integr. Manuf. 2018, 54, 65–82. [Google Scholar] [CrossRef]
- Maldonado-Ramirez, A.; Rios-Cabrera, R.; Lopez-Juarez, I. A visual path-following learning approach for industrial robots using DRL. Robot. Comput.-Integr. Manuf. 2021, 71, 102130. [Google Scholar] [CrossRef]
- Schmitz, A.; Berthet-Rayne, P. Using Deep-Learning Proximal Policy Optimization to Solve the Inverse Kinematics of Endoscopic Instruments. IEEE Trans. Med. Robot. Bionics 2020, 3, 273–276. [Google Scholar] [CrossRef]
- Wen, S.; Wen, Z.; Zhang, D.; Zhang, H.; Wang, T. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning. Appl. Soft Comput. 2021, 110, 107605. [Google Scholar] [CrossRef]
- Tan, X.; Chng, C.B.; Su, Y.; Lim, K.B.; Chui, C.K. Robot-assisted training in laparoscopy using deep reinforcement learning. IEEE Robot. Autom. Lett. 2019, 4, 485–492. [Google Scholar] [CrossRef]
- Tallamraju, R.; Saini, N.; Bonetto, E.; Pabst, M.; Liu, Y.T.; Black, M.J.; Ahmad, A. Aircaprl: Autonomous aerial human motion capture using deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 6678–6685. [Google Scholar] [CrossRef]
- Gangapurwala, S.; Mitchell, A.; Havoutis, I. Guided constrained policy optimization for dynamic quadrupedal robot locomotion. IEEE Robot. Autom. Lett. 2020, 5, 3642–3649. [Google Scholar] [CrossRef]
- Zhang, D.; Bailey, C.P. Obstacle avoidance and navigation utilizing reinforcement learning with reward shaping. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II; SPIE: Bellingham, WA, USA, 2020; Volume 11413, pp. 500–506. [Google Scholar]
- Zhao, T.; Wang, M.; Zhao, Q.; Zheng, X.; Gao, H. A path-planning method based on improved soft actor-critic algorithm for mobile robots. Biomimetics 2023, 8, 481. [Google Scholar] [CrossRef]
- Wong, M.F.; Tan, C.W. Aligning Crowd-Sourced Human Feedback for Reinforcement Learning on Code Generation by Large Language Models. arXiv 2025, arXiv:2503.15129. [Google Scholar] [CrossRef]
- Zheng, R.; Dou, S.; Gao, S.; Hua, Y.; Shen, W.; Wang, B.; Liu, Y.; Jin, S.; Liu, Q.; Zhou, Y.; et al. Secrets of rlhf in large language models part i: Ppo. arXiv 2023, arXiv:2307.04964. [Google Scholar]
- Azlan, N.; Zainudin, F.; Yusuf, H.; Toha, S.; Yusoff, S.; Osman, N. Fuzzy logic controlled miniature LEGO robot for undergraduate training system. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007; pp. 2184–2188. [Google Scholar]
- Singh, N.H.; Thongam, K. Mobile robot navigation using fuzzy logic in static environments. Procedia Comput. Sci. 2018, 125, 11–17. [Google Scholar] [CrossRef]
- Pandey, A.; Parhi, D.R. MATLAB simulation for mobile robot navigation with hurdles in cluttered environment using minimum rule based fuzzy logic controller. Procedia Technol. 2014, 14, 28–34. [Google Scholar] [CrossRef]
- Xu, J.X.; Guo, Z.Q.; Lee, T.H. Design and implementation of a Takagi–Sugeno-type fuzzy logic controller on a two-wheeled mobile robot. IEEE Trans. Ind. Electron. 2012, 60, 5717–5728. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Vu, C.T. Mobile Robot Motion Control Using a Combination of Fuzzy Logic Method and Kinematic Model. In Intelligent Systems and Networks; Springer: Singapore, 2022; pp. 495–503. [Google Scholar]
- Karaduman, B.; Tezel, B.T.; Challenger, M. Enhancing BDI agents using fuzzy logic for CPS and IoT interoperability using the JaCa platform. Symmetry 2022, 14, 1447. [Google Scholar] [CrossRef]
- Lu, J.; Ma, G.; Zhang, G. Fuzzy Machine Learning: A Comprehensive Framework and Systematic Review. IEEE Trans. Fuzzy Syst. 2024, 32, 3861–3878. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, T.; Kwan, T.; Wu, X. Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning. Acta Astronaut. 2020, 176, 156–172. [Google Scholar] [CrossRef]
- Khater, A.A.; El-Nagar, A.M.; El-Bardini, M.; El-Rabaie, N.M. Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems. J. Frankl. Inst. 2019, 356, 9254–9285. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, W.; Cheng, N.; Gao, J. Trajectory tracking control for rotary steerable systems using interval type-2 fuzzy logic and reinforcement learning. J. Frankl. Inst. 2018, 355, 803–826. [Google Scholar] [CrossRef]
- Vemireddy, S.; Rout, R.R. Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput. Netw. 2021, 199, 108463. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Tang, B.; Cheng, Y. Conditional DQN-based motion planning with fuzzy logic for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2020, 23, 2966–2977. [Google Scholar] [CrossRef]
- Hinojosa, W.M.; Nefti, S.; Kaymak, U. Systems control with generalized probabilistic fuzzy-reinforcement learning. IEEE Trans. Fuzzy Syst. 2010, 19, 51–64. [Google Scholar] [CrossRef]
- Chen, G.; Lu, Y.; Yang, X.; Hu, H. Reinforcement learning control for the swimming motions of a beaver-like, single-legged robot based on biological inspiration. Robot. Auton. Syst. 2022, 154, 104116. [Google Scholar] [CrossRef]
- Liu, J.; Lu, H.; Luo, Y.; Yang, S. Spiking neural network-based multi-task autonomous learning for mobile robots. Eng. Appl. Artif. Intell. 2021, 104, 104362. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, C.; Zhang, G.; Chen, C.P. Reinforcement learning-driven dynamic obstacle avoidance for mobile robot trajectory tracking. Knowl.-Based Syst. 2024, 297, 111974. [Google Scholar] [CrossRef]
- Cui, T.; Yang, X.; Jia, F.; Jin, J.; Ye, Y.; Bai, R. Mobile robot sequential decision making using a deep reinforcement learning hyper-heuristic approach. Expert Syst. Appl. 2024, 257, 124959. [Google Scholar] [CrossRef]
- Yan, C.; Chen, G.; Li, Y.; Sun, F.; Wu, Y. Immune deep reinforcement learning-based path planning for mobile robot in unknown environment. Appl. Soft Comput. 2023, 145, 110601. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, C.; Hu, C.; Zhang, J. Event-triggered reconfigurable reinforcement learning motion-planning approach for mobile robot in unknown dynamic environments. Eng. Appl. Artif. Intell. 2023, 123, 106197. [Google Scholar] [CrossRef]
- Bai, Z.; Pang, H.; He, Z.; Zhao, B.; Wang, T. Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning. IEEE Internet Things J. 2024, 11, 22153–22166. [Google Scholar] [CrossRef]
- Choi, J.; Lee, G.; Lee, C. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning. Intell. Serv. Robot. 2021, 14, 663–677. [Google Scholar] [CrossRef]
- Khnissi, K.; Jabeur, C.B.; Seddik, H. A smart mobile robot commands predictor using recursive neural network. Robot. Auton. Syst. 2020, 131, 103593. [Google Scholar] [CrossRef]
- Duguleana, M.; Mogan, G. Neural networks based reinforcement learning for mobile robots obstacle avoidance. Expert Syst. Appl. 2016, 62, 104–115. [Google Scholar] [CrossRef]
- Shantia, A.; Timmers, R.; Chong, Y.; Kuiper, C.; Bidoia, F.; Schomaker, L.; Wiering, M. Two-stage visual navigation by deep neural networks and multi-goal reinforcement learning. Robot. Auton. Syst. 2021, 138, 103731. [Google Scholar] [CrossRef]
- Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton. Syst. 2019, 115, 143–161. [Google Scholar] [CrossRef]
- Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [Google Scholar] [CrossRef]
- Mabu, S.; Tjahjadi, A.; Hirasawa, K. Adaptability analysis of genetic network programming with reinforcement learning in dynamically changing environments. Expert Syst. Appl. 2012, 39, 12349–12357. [Google Scholar] [CrossRef]
- Li, S.; Ding, L.; Gao, H.; Chen, C.; Liu, Z.; Deng, Z. Adaptive neural network tracking control-based reinforcement learning for wheeled mobile robots with skidding and slipping. Neurocomputing 2018, 283, 20–30. [Google Scholar] [CrossRef]
- Bingol, M.C. Reinforcement Learning-Based Safe Path Planning for a 3R Planar Robot. Sakarya Univ. J. Sci. 2022, 26, 127–134. [Google Scholar] [CrossRef]
- Bingol, M.C. Development of Neural Network Based on Deep Reinforcement Learning to Compensate for Damaged Actuator of a Planar Robot. In Proceedings of the Global Conference on Engineering Research (Globcer’21), Bandırma, Türkiye, 2–5 June 2021. [Google Scholar]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
Parameter | Value |
---|---|
Gravity | 9.81 |
Time Step | 128 |
Constraint Force Mixing | 10−5 |
Error-Reduction Parameter | 0.2 |
Optimal Thread Count | 1 |
Physics Disable Time | 1 |
Physics Disable Linear Threshold | 0.01 |
Physics Disable Angular Threshold | 0.01 |
Line Scale | 0.1 |
Drag Force Scale | 30 |
Drag Torque Scale | 5 |
Rules | Reward | |||||
---|---|---|---|---|---|---|
1 | if | Good | Good | Good | then | Perfect |
2 | if | Good | Good | Bad | then | Good |
3 | if | Good | Bad | Good | then | Good |
4 | if | Good | Bad | Bad | then | Bad |
5 | if | Bad | Good | Good | then | Good |
6 | if | Bad | Good | Bad | then | Bad |
7 | if | Bad | Bad | Good | then | Bad |
8 | if | Bad | Bad | Bad | then | Terrible |
C( ± SD) | A( ± SD) | S( ± SD) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Environment 1 | 6 | 20 | 15 | 249 | 24.0 ± 9.54 | 614 | 63.5 ± 17.70 | 365 | 39.4 ± 26.25 | 13 | 73 | 60 | 7 | 93 | 86 |
10 | 20 | 15 | 253 | 24.1 ± 18.28 | 672 | 70.3 ± 19.19 | 419 | 46.3 ± 37.35 | 17 | 75 | 58 | 2 | 94 | 92 | |
8 | 15 | 15 | 244 | 25.0 ± 15.57 | 591 | 60.3 ± 17.45 | 347 | 35.34 ± 31.08 | 2 | 88 | 86 | 2 | 94 | 92 | |
8 | 25 | 15 | 327 | 32.2 ± 17.42 | 406 | 40.6 ± 35.71 | 79 | 8.4 ± 51.87 | 10 | 81 | 71 | 7 | 88 | 81 | |
8 | 20 | 12 | 183 | 17.5 ± 6.25 | 682 | 70.4 ± 15.29 | 499 | 52.9 ± 20.33 | 10 | 89 | 79 | 7 | 92 | 85 | |
8 | 20 | 18 | 198 | 19.0 ± 16.63 | 717 | 74.3 ± 25.28 | 519 | 55.2 ± 41.60 | 11 | 89 | 78 | 2 | 94 | 92 | |
8 | 20 | 15 | 214 | 19.6 ± 11.00 | 658 | 68.7 ± 19.37 | 444 | 49.1 ± 29.55 | 14 | 80 | 66 | 5 | 92 | 87 | |
110 | 10.4 ± 7.87 | 748 | 76.0 ± 17.92 | 638 | 65.6 ± 25.57 | 1 | 99 | 98 | 0 | 100 | 100 | ||||
Environment 2 | 6 | 20 | 15 | 466 | 46.5 ± 10.80 | 378 | 38.9 ± 13.07 | −88 | −7.6 ± 23.37 | 37 | 48 | 11 | 29 | 61 | 32 |
10 | 20 | 15 | 440 | 43.7 ± 12.75 | 384 | 39.3 ± 22.75 | −56 | −4.5 ± 34.72 | 33 | 58 | 25 | 18 | 79 | 61 | |
8 | 15 | 15 | 462 | 47.8 ± 15.42 | 411 | 40.7 ± 21.49 | −51 | −7.0 ± 35.92 | 16 | 80 | 64 | 16 | 80 | 64 | |
8 | 25 | 15 | 500 | 50.4 ± 5.10 | 354 | 36.3 ± 12.80 | −146 | −14.1 ± 14.81 | 44 | 53 | 9 | 44 | 54 | 10 | |
8 | 20 | 12 | 395 | 38.1 ± 15.98 | 467 | 48.4 ± 21.92 | 72 | 10.3 ± 37.65 | 30 | 54 | 24 | 20 | 78 | 58 | |
8 | 20 | 18 | 478 | 49.3 ± 13.45 | 430 | 43.6 ± 18.30 | −48 | −5.7 ± 30.81 | 30 | 67 | 37 | 24 | 75 | 51 | |
8 | 20 | 15 | 278 | 25.4 ± 14.93 | 604 | 64.1 ± 21.92 | 326 | 38.6 ± 36.74 | 30 | 62 | 32 | 10 | 87 | 77 | |
109 | 9.27 ± 14.31 | 773 | 79.6 ± 28.57 | 644 | 70.4 ± 42.67 | 3 | 96 | 93 | 0 | 100 | 100 | ||||
Environment 3 | 6 | 20 | 15 | 243 | 22.7 ± 15.42 | 667 | 69.3 ± 19.50 | 424 | 46.5 ± 34.84 | 13 | 82 | 69 | 4 | 91 | 87 |
10 | 20 | 15 | 222 | 20.3 ± 13.30 | 651 | 67.6 ± 19.79 | 429 | 47.3 ± 32.74 | 10 | 83 | 73 | 9 | 89 | 80 | |
8 | 15 | 15 | 445 | 45.5 ± 14.25 | 399 | 39.6 ± 18.03 | −46 | −5.9 ± 31.35 | 16 | 77 | 61 | 16 | 78 | 62 | |
8 | 25 | 15 | 737 | 76.4 ± 34.43 | 246 | 21.9 ± 3266 | −491 | −54.4 ± 67.08 | 8 | 87 | 79 | 8 | 88 | 80 | |
8 | 20 | 12 | 288 | 27.9 ± 9.71 | 584 | 60.6 ± 17.18 | 296 | 32.7 ± 26.30 | 24 | 64 | 40 | 11 | 87 | 76 | |
8 | 20 | 18 | 435 | 42.8 ± 7.58 | 488 | 51.0 ± 12.27 | 53 | 8.2 ± 19.63 | 43 | 54 | 11 | 25 | 73 | 48 | |
8 | 20 | 15 | 273 | 27.0 ± 13.83 | 581 | 59.2 ± 20.78 | 308 | 32.1 ± 34.43 | 10 | 86 | 76 | 9 | 88 | 79 | |
112 | 9.7 ± 11.74 | 849 | 87.6 ± 17.24 | 737 | 77.9 ± 28.93 | 2 | 98 | 96 | 0 | 100 | 100 | ||||
Environment 4 | 6 | 20 | 15 | 522 | 52.1 ± 15.93 | 386 | 39.6 ± 21.10 | −136 | −12.5 ± 36.50 | 38 | 59 | 21 | 29 | 67 | 38 |
10 | 20 | 15 | 494 | 49.6 ± 12.77 | 419 | 42.6 ± 13.58 | −75 | −6.9 ± 26.02 | 42 | 54 | 12 | 31 | 63 | 32 | |
8 | 15 | 15 | 576 | 57.8 ± 11.29 | 348 | 35.8 ± 11.92 | −228 | −22.0 ± 22.68 | 49 | 46 | −3 | 36 | 63 | 27 | |
8 | 25 | 15 | 444 | 43.7 ± 13.97 | 484 | 49.6 ± 17.50 | 40 | 5.9 ± 30.90 | 38 | 59 | 21 | 22 | 73 | 51 | |
8 | 20 | 12 | 481 | 47.4 ± 16.27 | 432 | 44.8 ± 16.67 | −49 | −2.5 ± 32.77 | 42 | 56 | 14 | 25 | 69 | 44 | |
8 | 20 | 18 | 514 | 51.4 ± 16.68 | 407 | 40.9 ± 17.35 | −107 | −10.5 ± 33.81 | 33 | 66 | 33 | 21 | 70 | 49 | |
8 | 20 | 15 | 470 | 45.8 ± 18.99 | 444 | 47.2 ± 22.77 | −26 | 1.4 ± 41.50 | 51 | 40 | −11 | 15 | 79 | 64 | |
299 | 29.7 ± 16.13 | 598 | 60.5 ± 24.06 | 299 | 30.8 ± 40.18 | 14 | 83 | 69 | 15 | 84 | 69 |
Arrival Time (s) | Distance Traveled (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Env | Crashed | Arrived | Score | Min | Max | Median | Min | Max | Median |
1 | 0 | 100 | 100 | 15.872 | 40.32 | 23.808 | 3.122 | 8.02 | 4.705 |
2 | 0 | 100 | 100 | 18.944 | 34.176 | 24.064 | 3.716 | 6.774 | 4.747 |
3 | 0 | 100 | 100 | 16.00 | 34.04 | 22.144 | 3.133 | 7.748 | 4.362 |
4 | 7 | 91 | 84 | 17.152 | 32.00 | 24.064 | 3.203 | 6.252 | 4.637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bingol, M.C. A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning. Electronics 2025, 14, 1593. https://doi.org/10.3390/electronics14081593
Bingol MC. A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning. Electronics. 2025; 14(8):1593. https://doi.org/10.3390/electronics14081593
Chicago/Turabian StyleBingol, Mustafa Can. 2025. "A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning" Electronics 14, no. 8: 1593. https://doi.org/10.3390/electronics14081593
APA StyleBingol, M. C. (2025). A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning. Electronics, 14(8), 1593. https://doi.org/10.3390/electronics14081593