Motion Pattern Recognition via CNN-LSTM-Attention Model Using Array-Based Wi-Fi CSI Sensors in GNSS-Denied Areas
Abstract
:1. Introduction
- (1)
- A 2 × 2 array Wi-Fi CSI receiver that merges all channel data within the coverage area of the Wi-Fi signal, improving data stability over single Wi-Fi receivers.
- (2)
- A hybrid HAR framework combining CNN, LSTM, and attention, offering superior generalization, data focusing, and precision, achieving recognition accuracy near 98%.
2. Related Work
2.1. Models Existing Human Motion Detection Methods
2.2. Models of HAR in Wi-Fi CSI Technique
3. Materials and Methods
3.1. Data Reception and Processing of Wi-Fi Array Sensors
- (1)
- Data Anonymization and De-identification: We will anonymize the collected Wi-Fi CSI data to ensure they cannot be directly linked to an individual’s identity. Even if the data are leaked, they will not pose a threat to user privacy.
- (2)
- Data Encryption: We will encrypt all Wi-Fi CSI data to ensure security during transmission and storage, preventing malicious interception.
- (3)
- Edge Computing and Local Processing: We will use edge computing technologies to analyze and process data locally, avoiding the transmission of data to the cloud, which will further reduce the risk of privacy leakage.
3.2. Feature Extraction from Raw Data
3.3. The CNN-LSTM-Attention Network for Human Motion Recognition
4. Experiments and Results
4.1. Experimental Setup
4.2. Array Wi-Fi Data Feature Analysis
4.3. Data Synchronization and Filtering
4.4. Performance Analysis of Action Detection Experiments
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossen, M.A.; Abas, P.E. Machine Learning for Human Activity Recognition: State-of-the-Art Techniques and Emerging Trends. J. Imaging 2025, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.E.; Kim, S.; Sul, J.H.; Kim, S.M. Data Reconstruction Methods in Multi-Feature Fusion CNN Model for Enhanced Human Activity Recognition. Sensors 2025, 25, 1184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, X.; He, D.; Wang, R.; Guo, Y. sEMG Signals Characterization and Identification of Hand Movements by Machine Learning Considering Sex Differences. Appl. Sci. 2022, 12, 2962. [Google Scholar] [CrossRef]
- Alexan, A.R.; Alexan, A.I.; Oniga, S. Multi-User Activity Recognition Using Plot Images Based on Ambiental Sensors. Appl. Sci. 2025, 15, 2610. [Google Scholar] [CrossRef]
- Kang, H.; Kim, D.; Toh, K.-A. Human Activity Recognition Through Augmented WiFi CSI Signals by Lightweight Attention-GRU. Sensors 2025, 25, 1547. [Google Scholar] [CrossRef]
- Wu, X.; Ling, Z.; Zhang, X.; Ma, Z.; Deng, W. Human Similar Activity Recognition Using Millimeter-Wave Radar Based on CNN-BiLSTM and Class Activation Mapping. Eng 2025, 6, 44. [Google Scholar] [CrossRef]
- Vikas, C.M.; Rajendran, S.; Pattar, A.; Jamadagni, H.S.; Budihal, R. WiFi RSSI and inertial sensor based indoor localisation system: A simplified hybrid approach. In Proceedings of the 2016 International Conference on Signal and Information Processing (IConSIP), Nanded, Maharashtra, 6–8 October 2016; 2016; pp. 1–6. [Google Scholar]
- Chen, X.; Zou, Y.; Li, C.; Xiao, W. A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI. IEEE Trans. Hum.-Mach. Syst. 2024, 54, 68–78. [Google Scholar] [CrossRef]
- Varga, D. Critical Analysis of Data Leakage in WiFi CSI-Based Human Action Recognition Using CNNs. Sensors 2024, 24, 3159. [Google Scholar] [CrossRef] [PubMed]
- Shahverdi, H.; Nabati, M.; Fard Moshiri, P.; Asvadi, R.; Ghorashi, S.A. Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques. Information 2023, 14, 404. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Liu, Z.; Wu, Y.; Li, T.; Yang, Y.; Solimene, R. A Framework for Human Activity Recognition Based on WiFi CSI Signal Enhancement. Int. J. Antennas Propag. 2021, 2021, 6654752. [Google Scholar] [CrossRef]
- Fard Moshiri, P.; Shahbazian, R.; Nabati, M.; Ghorashi, S.A. A CSI-Based Human Activity Recognition Using Deep Learning. Sensors 2021, 21, 7225. [Google Scholar] [CrossRef]
- Shi, Z.; Cheng, Q.; Zhang, J.A.; Yi Da Xu, R. Environment-Robust WiFi-Based Human Activity Recognition Using Enhanced CSI and Deep Learning. IEEE Internet Things J. 2022, 9, 24643–24654. [Google Scholar] [CrossRef]
- Shafiqul, I.M.; Jannat, M.K.A.; Kim, J.-W.; Lee, S.-W.; Yang, S.-H. HHI-AttentionNet: An Enhanced Human-Human Interaction Recognition Method Based on a Lightweight Deep Learning Model with Attention Network from CSI. Sensors 2022, 22, 6018. [Google Scholar] [CrossRef]
- Kaya, Y.; Topuz, E.K. Human activity recognition from multiple sensors data using deep CNNs. Multimed. Tools Appl. 2023, 83, 10815–10838. [Google Scholar] [CrossRef]
- Zein, H.E.; Mourad-Chehade, F.; Amoud, H. CSI-Based Human Activity Recognition via Lightweight CNN Model and Data Augmentation. IEEE Sens. J. 2024, 24, 25060–25069. [Google Scholar] [CrossRef]
- Jobanputra, C.; Bavishi, J.; Doshi, N. Human Activity Recognition: A Survey. Procedia Comput. Sci. 2019, 155, 698–703. [Google Scholar] [CrossRef]
- Guan, D.; Hua, C.; Zhao, X. Two-Path Spatial-Temporal Feature Fusion and View Embedding for Gait Recognition. Appl. Sci. 2023, 13, 12808. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Xia, L. Human activity recognition from 3D data: A review. Pattern Recognit. Lett. 2014, 48, 70–80. [Google Scholar] [CrossRef]
- Lee, Y.; Lama, B.; Joo, S.; Kwon, J. Enhancing Human Key Point Identification: A Comparative Study of the High-Resolution VICON Dataset and COCO Dataset Using BPNET. Appl. Sci. 2024, 14, 4351. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM. IEEE Trans. Mob. Comput. 2019, 18, 2714–2724. [Google Scholar] [CrossRef]
- Farrokhi, S.; Dargie, W.; Poellabauer, C. Human Activity Recognition Based on Wireless Electrocardiogram and Inertial Sensors. IEEE Sens. J. 2024, 24, 6490–6499. [Google Scholar] [CrossRef]
- Zia ur Rehman, M.; Gilani, S.O.; Waris, A.; Niazi, I.K.; Slabaugh, G.; Farina, D.; Kamavuako, E.N. Stacked Sparse Autoencoders for EMG-Based Classification of Hand Motions: A Comparative Multi Day Analyses between Surface and Intramuscular EMG. Appl. Sci. 2018, 8, 1126. [Google Scholar] [CrossRef]
- Taylor, W.; Shah, S.A.; Dashtipour, K.; Le Kernec, J.; Abbasi, Q.H.; Assaleh, K.; Arshad, K.; Imran, M.A. Wireless Sensing for Human Activity Recognition Using USRP. In Proceedings of the 16th EAI International Conference on Body Area Networks (EAI BODYNETS 2021), Glasgow, UK, 25–26 October 2021; pp. 52–62. [Google Scholar]
- Zhang, Y.; Wang, X.; Wang, Y.; Chen, H. Human Activity Recognition Across Scenes and Categories Based on CSI. IEEE Trans. Mob. Comput. 2022, 21, 2411–2420. [Google Scholar] [CrossRef]
- Dahou, A.; Al-qaness, M.A.A.; Abd Elaziz, M.; Helmi, A. Human activity recognition in IoHT applications using Arithmetic Optimization Algorithm and deep learning. Measurement 2022, 199, 111445. [Google Scholar] [CrossRef]
- Gao, X.; Luo, H.; Wang, Q.; Zhao, F.; Ye, L.; Zhang, Y. A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM. Sensors 2019, 19, 947. [Google Scholar] [CrossRef]
- Xia, K.; Huang, J.; Wang, H. LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 2020, 8, 56855–56866. [Google Scholar] [CrossRef]
- Shen, L.H.; Hsiao, A.H.; Chu, F.Y.; Feng, K.T. Time-Selective RNN for Device-Free Multiroom Human Presence Detection Using WiFi CSI. IEEE Trans. Instrum. Meas. 2024, 73, 1–17. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Phaphan, W.; Hnoohom, N.; Jitpattanakul, A. Attention-Based Hybrid Deep Learning Network for Human Activity Recognition Using WiFi Channel State Information. Appl. Sci. 2023, 13, 8884. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, K.; Sun, H. Indoor Localization System Based on WiFi RSSI using Wavelet-CNN Architecture. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 2305–2309. [Google Scholar]
- Huang, Q.; Xie, W.; Li, C.; Wang, Y.; Liu, Y. Human Action Recognition Based on Hierarchical Multi-Scale Adaptive Conv-Long Short-Term Memory Network. Appl. Sci. 2023, 13, 10560. [Google Scholar] [CrossRef]
- Song, J.; Zhu, A.; Tu, Y.; Huang, H.; Arif, M.A.; Shen, Z.; Zhang, X.; Cao, G. Effects of Different Feature Parameters of sEMG on Human Motion Pattern Recognition Using Multilayer Perceptrons and LSTM Neural Networks. Appl. Sci. 2020, 10, 3358. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Huang, R. A Combination of RNN and CNN for Attention-based Relation Classification. Procedia Comput. Sci. 2018, 131, 911–917. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, Q.; Chen, F.; Zhang, H.; Xian, H. P-A Scheme: A Robust and Lightweight Wi-Fi Device Identification Approach for Enhancing Industrial Security. Electronics 2025, 14, 513. [Google Scholar] [CrossRef]
- Madokoro, H.; Nix, S.; Woo, H.; Sato, K. A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors. Appl. Sci. 2021, 11, 11807. [Google Scholar] [CrossRef]
Device | Specifications | Number of Devices | Usage |
---|---|---|---|
Wi-Fi Router (AP) (TP-Link, Shenzhen, China) |
|
| |
Wi-Fi Receivers (ESP32) (ESPRESSIF, Shanghai, China) |
|
| |
Computer (PC) (Lenovo, Hong Kong, China) |
|
|
Different Data | Recognition Accuracy | Latency and Response Time |
---|---|---|
Processed Data | 98% | 12 ms |
Single Receiver 1 | 86% | 17 ms |
Single Receiver 2 | 81% | 21 ms |
Single Receiver 3 | 87% | 14 ms |
Single Receiver 4 | 87% | 16 ms |
Model | Accuracy | Precision | Recall | F1 Score | Specificity |
---|---|---|---|---|---|
C-L-A | 0.982265 | 0.98247 | 0.982941 | 0.982706 | 0.997454 |
LSTM | 0.964578 | 0.964756 | 0.964564 | 0.96466 | 0.994923 |
BP | 0.850242 | 0.848873 | 0.8564 | 0.85262 | 0.978686 |
SVM | 0.819081 | 0.818628 | 0.817052 | 0.817839 | 0.974143 |
CNN | 0.895674 | 0.894842 | 0.894751 | 0.894796 | 0.985094 |
P-A | 0.967309 | 0.966775 | 0.966775 | 0.966775 | 0.995328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Que, S.; Liu, N.; Wang, Q.; Li, T. Motion Pattern Recognition via CNN-LSTM-Attention Model Using Array-Based Wi-Fi CSI Sensors in GNSS-Denied Areas. Electronics 2025, 14, 1594. https://doi.org/10.3390/electronics14081594
Xia M, Que S, Liu N, Wang Q, Li T. Motion Pattern Recognition via CNN-LSTM-Attention Model Using Array-Based Wi-Fi CSI Sensors in GNSS-Denied Areas. Electronics. 2025; 14(8):1594. https://doi.org/10.3390/electronics14081594
Chicago/Turabian StyleXia, Ming, Shengmao Que, Nanzhu Liu, Qu Wang, and Tuan Li. 2025. "Motion Pattern Recognition via CNN-LSTM-Attention Model Using Array-Based Wi-Fi CSI Sensors in GNSS-Denied Areas" Electronics 14, no. 8: 1594. https://doi.org/10.3390/electronics14081594
APA StyleXia, M., Que, S., Liu, N., Wang, Q., & Li, T. (2025). Motion Pattern Recognition via CNN-LSTM-Attention Model Using Array-Based Wi-Fi CSI Sensors in GNSS-Denied Areas. Electronics, 14(8), 1594. https://doi.org/10.3390/electronics14081594