A High-Precision Torque Control Method for New Energy Vehicle Motors Based on Virtual Signal Injection
Abstract
:1. Introduction
- This paper analyzes the formation mechanism of the reduction in torque control accuracy and MTPA trajectory deviation of PMSM under the influence of temperature and the design Gated Recurrent Unit neural network torque observer considering motor temperature.
- A real-time parameter estimation method based on virtual signal injection was proposed. Through mathematical calculation, the partial derivative of torque with respect to current was obtained, thereby enabling the calculation of motor parameters and dynamic compensation of the maximum torque and (MTPA).
- The LMS algorithm is also employed for online adjustment of the network structure. It takes advantage of the fact that dTe/dβ is 0 in MTPA to enhance the accuracy of torque measurement.
2. System Model and Network Introduction
2.1. The d-q Axis Model of the Permanent Magnet Motor
2.2. Analysis of the Influence of Motor Temperature on the Operating Characteristics of the Permanent Magnet Motor
2.3. The Gated Recurrent Unit Neural Network
2.4. The LMS Algorithm
3. Proposed Methods
3.1. The GRU Network Considering Motor Temperature
3.2. Principle of Motor Parameter Calculation
3.3. MTPA Current Reference Value Online Adjustment Policy
3.4. The Network Correction Principle
4. Experimental Results and Analysis
4.1. Experimental Results of the Effect of Temperature Rise on the Motor
4.2. High-Precision Torque Control Experiment Results
4.3. Optimal Current Trajectory Tracking
5. Discussion
6. Conclusions
- The temperature factor is taken into account in the torque observer to improve the accuracy of torque observation;
- The partial derivative information of torque to d-q axis current calculated by virtual signal injection is used to identify the motor parameters online, so as to realize the correction of the MTPA current reference value.
- The partial derivative information of torque to current vector angle calculated by the LMS algorithm and virtual signal injection is used to adjust the internal parameters of the neural network in real time, which solves the problem of fixed network parameters after traditional offline training and enhances the robustness and prediction accuracy of the network.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, S.-H.; Chin, J.-W.; Cha, K.-S.; Ryu, J.-Y.; Lim, M.-S. Investigation of AC copper loss considering effect of field and armature excitation on IPMSM with hairpin winding. IEEE Trans. Ind. Electron. 2023, 70, 12102–12112. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, L.; Zhang, B.; Yang, M.; Yang, X.; Guo, X. Decoupling Algorithm for Online Identification of Inductance in Permanent Magnet Synchronous Motors Based on Virtual Axis Injection Method and Sensorless Control. Energies 2024, 17, 6308. [Google Scholar] [CrossRef]
- Gierczynski, M.; Jakubowski, R.; Kupiec, E.; Niewiara, L.J.; Tarczewski, T.; Grzesiak, L.M. Identification of the Parameters of the Highly Saturated Permanent Magnet Synchronous Motor (PMSM): Selected Problems of Accuracy. Energies 2024, 17, 6096. [Google Scholar] [CrossRef]
- Wang, M.-S.; Hsieh, M.-F.; Lin, H.-Y. Operational Improvement of Interior Permanent Magnet Synchronous Motor Using Fuzzy Field-Weakening Control. Electronics 2018, 7, 452. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, H.; Zhu, G.; Luo, J. Improved MTPA and MTPV Optimal Criteria Analysis Based on IPMSM Nonlinear Flux-Linkage Model. Energies 2024, 17, 3494. [Google Scholar] [CrossRef]
- Petrun, M.; Černelič, J. Sensitivity Analysis of MTPA Control to Angle Errors for Synchronous Reluctance Machines. Mathematics 2025, 13, 38. [Google Scholar] [CrossRef]
- Morimoto, S.; Sanada, M.; Takeda, Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator. IEEE Trans. Ind. Appl. 1994, 30, 920–926. [Google Scholar] [CrossRef]
- Morimoto, S.; Hatanaka, K.; Tong, Y.; Takeda, Y.; Hirasa, T. Servo drive system and control characteristics of salient pole permanent magnet synchronous motor. IEEE Trans. Ind. Appl. 1993, 29, 338–343. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Sul, S.-K. Torque control strategy of an IPMSM considering the flux variation of the permanent magnet. In Proceedings of the 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 1301–1307. [Google Scholar] [CrossRef]
- Lee, E.-W.; Park, C.-H.; Kim, J.-B. Real-time MTPA and field-weakening method for IPMSM in the full speed region. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Qi, X.; Aarniovuori, L.; Cao, W. Regularization-theory-based fast torque tracking method for interior permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 2023, 70, 12113–12123. [Google Scholar] [CrossRef]
- Liu, Q.; Hameyer, K. High-performance adaptive torque control for an IPMSM with real-time MTPA operation. IEEE Trans. Energy Convers. 2016, 32, 571–581. [Google Scholar] [CrossRef]
- Underwood, S.J.; Husain, I. Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 2009, 57, 2435–2443. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Zhang, G.; Geng, Q.; Shi, T. Maximum torque per ampere (MTPA) control of IPMSM systems based on controller parameters self-modification. IEEE Trans.Veh. Technol. 2020, 69, 2613–2620. [Google Scholar] [CrossRef]
- Mohamed, Y.-R.; Lee, T.K. Adaptive self-tuning MTPA vector controller for IPMSM drive system. IEEE Trans. Energy Convers. 2006, 21, 636–644. [Google Scholar] [CrossRef]
- Wang, L.; Tan, G.; Meng, J. Research on model predictive control of IPMSM based on adaline neural network parameter identification. Energies 2019, 12, 4803. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Chen, X. Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Power Electron. 2014, 30, 5036–5045. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Yu, D.; Chen, Y.; Zhang, J.; Niu, F.; Fang, Y.; Cao, W.; Zhang, H. An accurate virtual signal injection control of MTPA for an IPMSM with fast dynamic response. IEEE Trans. Power Electron. 2017, 33, 7916–7926. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, A.; Luo, P.; Shen, H.; Li, W.; He, X. IPMSMs sensorless MTPA control based on virtual q-axis inductance by using virtual high-frequency signal injection. IEEE Trans. Ind. Electron. 2019, 67, 136–146. [Google Scholar] [CrossRef]
- Miao, Q.; Li, Q.; Xu, Y.; Lin, Z.; Chen, W.; Li, X. Virtual Constant Signal Injection-Based MTPA Control for IPMSM Considering Partial Derivative Term of Motor Inductance Parameters. World Electr. Veh. J. 2022, 13, 240. [Google Scholar] [CrossRef]
- Lee, J.; Ha, J.-I. Temperature estimation of PMSM using a difference-estimating feedforward neural network. IEEE Access 2020, 8, 130855–130865. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, X.; Ouyang, W.; Bai, H.; Xiao, J. Multi-Parameter Fuzzy-Based Neural Network Sensorless PMSM Iterative Learning Control Algorithm for Vibration Suppression of Ship Rim-Driven Thruster. J. Mar. Sci. Eng. 2024, 12, 396. [Google Scholar] [CrossRef]
- Attestog, S.; Senanayaka, J.S.L.; Van Khang, H.; Robbersmyr, K.G. Mixed Fault Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray Flux Sensors. Sensors 2022, 22, 1216. [Google Scholar] [CrossRef] [PubMed]
- Rengifo, J.; Moreira, J.; Vaca-Urbano, F.; Alvarez-Alvarado, M.S. Detection of Inter-Turn Short Circuits in Induction Motors Using the Current Space Vector and Machine Learning Classifiers. Energies 2024, 17, 2241. [Google Scholar] [CrossRef]
- Kok, C.L.; Ho, C.K.; Aung, T.H.; Koh, Y.Y.; Teo, T.H. Transfer Learning and Deep Neural Networks for Robust Intersubject Hand Movement Detection from EEG Signals. Appl. Sci. 2024, 14, 8091. [Google Scholar] [CrossRef]
- Wu, S.; Ma, G.; Yao, C.; Sun, Z.; Xu, S. Current sensor fault detection and identification for PMSM drives using multi-channel global maximum pooling CNN. IEEE Trans. Power Electron. 2024, 39, 10311–10325. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, J.; Xiao, W.; Mei, L.; Yu, X. Demagnetization Fault Diagnosis of a PMSM for Electric Drilling Tools Using GAF and CNN. Electronics 2024, 13, 189. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Xu, D.; Chen, Q.; Li, J. Development of deep learning-based cooperative fault diagnosis method for multi-PMSM drive system in 4WID-EVs. IEEE Trans. Instrum. Meas. 2024, 73, 3506513. [Google Scholar] [CrossRef]
- El Bazi, N.; Guennouni, N.; Mekhfioui, M.; Goudzi, A.; Chebak, A.; Mabrouki, M. Predicting the Temperature of a Permanent Magnet Synchronous Motor: A Comparative Study of Artificial Neural Network Algorithms. Technologies 2025, 13, 120. [Google Scholar] [CrossRef]
- Luo, P.; Yin, Z.; Yuan, D.; Zhang, Y. A novel generative adversarial network based early fault diagnosis method for permanent magnet synchronous motor bearings. In IET Conference Proceedings CP842; Institution of Engineering and Technology: Stevenage, UK, 2023; pp. 60–63. [Google Scholar] [CrossRef]
- Huang, W.; Chen, H.; Zhao, Q. Fault Diagnosis of Inter-Turn Fault in Permanent Magnet-Synchronous Motors Based on Cycle-Generative Adversarial Networks and Deep Autoencoder. Appl. Sci. 2024, 14, 2139. [Google Scholar] [CrossRef]
- Feng, L.; Luo, H.; Xu, S.; Du, K. Inverter Fault Diagnosis for a Three-Phase Permanent-Magnet Synchronous Motor Drive System Based on SDAE-GAN-LSTM. Electronics 2023, 12, 4172. [Google Scholar] [CrossRef]
- Skarolek, P.; Frolov, F.; Lipcak, O.; Lettl, J. Reverse Conduction Loss Minimization in Gan Based PMSM Drive. Electronics 2020, 9, 1973. [Google Scholar] [CrossRef]
- Musadiq, M.S.; Lee, D.-M. A Novel Capacitance Estimation Method of Modular Multilevel Converters for Motor Drives Using Recurrent Neural Networks with Long Short-Term Memory. Energies 2024, 17, 5577. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tran, H.N.; Nguyen, T.H.; Jeon, J.W. Recurrent neural network-based robust adaptive model predictive speed control for PMSM with parameter mismatch. IEEE Trans. Ind. Electron. 2022, 70, 6219–6228. [Google Scholar] [CrossRef]
- Ran, P.; Lesselier, D.; Serhir, M. Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods. Electronics 2020, 9, 1750. [Google Scholar] [CrossRef]
- Bouziane, M.; Bouziane, A.; Naima, K.; Alkhafaji, M.A.; Afenyiveh, S.D.M.; Menni, Y. Enhancing temperature and torque prediction in permanent magnet synchronous motors using deep learning neural networks and BiLSTM RNNs. AIP Adv. 2024, 14, 105136. [Google Scholar] [CrossRef]
- Siddique, M.F.; Zaman, W.; Ullah, S.; Umar, M.; Saleem, F.; Shon, D.; Yoon, T.H.; Yoo, D.-S.; Kim, J.-M. Advanced Bearing-Fault Diagnosis and Classification Using Mel-Scalograms and FOX-Optimized ANN. Sensors 2024, 24, 7303. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Lei, G.; Liu, L.; Zhu, J. Calculation of Iron Loss in Permanent Magnet Synchronous Motors Based on PSO-RNN. In Proceedings of the 2023 IEEE International Magnetic Conference-Short Papers, Sendai, Japan, 15–19 May 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Q.; Wang, Q.; Liu, T. Temperature compensation strategy of output torque for permanent magnet synchronous motor based on BP neural network. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 774–779. [Google Scholar] [CrossRef]
- Li, Y.; Sun, T.; Zhang, W.; Li, S.; Liang, J.; Wang, Z. A torque observer for IPMSM drives based on deep neural network. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1530–1535. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2014; ISBN 978-0-13-267145-3. [Google Scholar]
- Liu, T.; Qin, Z.; Hong, Y.; Jiang, Z.-P. Distributed optimization of nonlinear multiagent systems: A small-gain approach. IEEE Trans. Autom. Control 2021, 67, 676–691. [Google Scholar] [CrossRef]
- Jin, Z.; Li, H.; Qin, Z.; Wang, Z. Gradient-free cooperative source-seeking of quadrotor under disturbances and communication constraints. IEEE Trans. Ind. Electron. 2024, 72, 1969–1979. [Google Scholar] [CrossRef]
Category | Design Proposal | Advantages |
---|---|---|
Neural network | GRU | Considering timing information, high computational efficiency and simple structure |
Weight initialization | Xavier | Avoid drastic changes in gradient, high stability, high training efficiency |
Weight update | Adam | High universality and fast convergence |
Parameter | Sign | Value | Unit |
---|---|---|---|
Rated current | IN | 437 | A |
Rated voltage | UN | 380 | V |
Rated load | TN | 215 | N·m |
Rated speed | nN | 4000 | r/min |
Stator resistance | Rs | 0.031 | Ω |
d-axis inductance | Ld | 0.0118 | mH |
q-axis inductance | Lq | 0.02375 | mH |
Poles pairs | P | 4 | - |
Permanent magnet flux | ψf | 0.0576 | Wb |
Temperature (°C) | PT100 Resistance Value (Ω) |
---|---|
0 | 100 |
20 | 107.8 |
40 | 115.60 |
60 | 123.34 |
80 | 130.90 |
100 | 138.51 |
120 | 146.07 |
140 | 153.38 |
Given Torque (N·m) | Mean Value (N·m) | Minimum Value (N·m) | Temperature (°C) |
---|---|---|---|
140 | 137.5 | 133.14 | 16.5–108.1 |
160 | 157.1 | 151.47 | 16.5–125.8 |
200 | 192.9 | 187 | 16.5–149.5 |
Temperature (°C) | GRU (MAE) | The Modified GRU (MAE) |
---|---|---|
140 | 4.556 | 2.146 |
160 | 7.572 | 2.347 |
200 | 10.397 | 2.797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, W.; Chen, W.; Li, C.; Lin, Z. A High-Precision Torque Control Method for New Energy Vehicle Motors Based on Virtual Signal Injection. Electronics 2025, 14, 1443. https://doi.org/10.3390/electronics14071443
Wang Z, Wang W, Chen W, Li C, Lin Z. A High-Precision Torque Control Method for New Energy Vehicle Motors Based on Virtual Signal Injection. Electronics. 2025; 14(7):1443. https://doi.org/10.3390/electronics14071443
Chicago/Turabian StyleWang, Zhiqiang, Weihao Wang, Wei Chen, Chen Li, and Zhichen Lin. 2025. "A High-Precision Torque Control Method for New Energy Vehicle Motors Based on Virtual Signal Injection" Electronics 14, no. 7: 1443. https://doi.org/10.3390/electronics14071443
APA StyleWang, Z., Wang, W., Chen, W., Li, C., & Lin, Z. (2025). A High-Precision Torque Control Method for New Energy Vehicle Motors Based on Virtual Signal Injection. Electronics, 14(7), 1443. https://doi.org/10.3390/electronics14071443