Leveraging Pre-Trained GPT Models for Equipment Remaining Useful Life Prognostics
Abstract
:1. Introduction
- A spatiotemporal feature fusion module that addresses the inflexibility of existing models in integrating temporal and spatial features, enhancing fusion capability.
- GPT-based pretrained model fine-tuning, leveraging its few-shot learning and cross-modal knowledge transfer advantages, significantly improving RUL prediction performance on small-sample datasets.
2. Related Work
2.1. RNN-Based RUL Prediction
2.2. CNN-Based RUL Prediction
3. Proposed Method
3.1. Spatiotemporal Feature Extraction Module
3.2. GPT Module
3.2.1. Linear Probing
3.2.2. Patching
3.2.3. Data Embedding Layer
3.2.4. Freezing Pretraining Module
3.3. Output Layer
3.4. Evaluation Metrics
4. Experimental Results
4.1. Dataset
Dataset | C-MAPSS | |
---|---|---|
FD001 | FD003 | |
Training Set Size | 14,118 | 17,811 |
Test Set Size | 10,196 | 13,696 |
Validation Set Size | 3613 | 4009 |
4.2. Data Preprocessing
4.3. Experimental Results and Analysis
4.3.1. Comparative Experiments
4.3.2. Ablation Study
5. Conclusions
- Adaptive Spatiotemporal Feature Fusion Module
- 2.
- GPT-Driven Cross-Modal Knowledge Transfer
- 3.
- Robust Long-Term Dependency Modeling
- 4.
- Enhanced Multi-Condition Adaptability
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [Google Scholar]
- Liu, C.-L.; Su, H.-C. Temporal learning in predictive health management using channel-spatial attention-based deep neural networks. Adv. Eng. Inform. 2024, 62, 102604. [Google Scholar]
- Samatas, G.G.; Moumgiakmas, S.S.; Papakostas, G.A. Predictive Maintenance—Bridging Artificial Intelligence and IoT. In Proceedings of the 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021. [Google Scholar]
- Sakib, N.; Wuest, T. Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP 2018, 78, 267–272. [Google Scholar]
- Polese, F.; Gallucci, C.; Carrubbo, L.; Santulli, R. Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project. Sustainability 2021, 13, 5884. [Google Scholar] [CrossRef]
- Liao, X.; Chen, S.; Wen, P.; Zhao, S. Remaining useful life with self-attention assisted physics-informed neural network. Adv. Eng. Inform. 2023, 58, 102195. [Google Scholar]
- Lv, S.; Liu, S.; Li, H.; Wang, Y.; Liu, G.; Dai, W. A hybrid method combining Lévy process and neural network for predicting remaining useful life of rotating machinery. Adv. Eng. Inform. 2024, 61, 102490. [Google Scholar]
- Wang, Y.; Zhao, Y.; Addepalli, S. Remaining Useful Life Prediction using Deep Learning Approaches: A Review. Procedia Manuf. 2020, 49, 81–88. [Google Scholar]
- Deutsch, J.; He, D. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 11–20. [Google Scholar]
- Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine remaining useful life prediction via an attention-based deep learning approach. IEEE Trans. Ind. Electron. 2020, 68, 2521–2531. [Google Scholar] [CrossRef]
- Aldekoa, I.; del Olmo, A.; Sastoque-Pinilla, L.; Sendino-Mouliet, S.; Lopez-Novoa, U.; de Lacalle, L.N.L. Early detection of tool wear in electromechanical broaching machines by monitoring main stroke servomotors. Mech. Syst. Signal Process. 2023, 204, 110773. [Google Scholar]
- de Lacalle, L.N.L.; Viadero, F.; Hernández, J.M. Applications of dynamic measurements to structural reliability updating. Probabilistic Eng. Mech. 1996, 11, 97–105. [Google Scholar]
- Del Olmo, A.; de Lacalle, L.L.; de Pissón, G.M.; Pérez-Salinas, C.; Ealo, J.; Sastoque, L.; Fernandes, M. Tool wear monitoring of high-speed broaching process with carbide tools to reduce production errors. Mech. Syst. Signal Process. 2022, 172, 109003. [Google Scholar]
- Coro, A.; Macareno, L.M.; Aguirrebeitia, J.; de Lacalle, L.N.L. A Methodology to Evaluate the Reliability Impact of the Replacement of Welded Components by Additive Manufacturing Spare Parts. Metals 2019, 9, 932. [Google Scholar] [CrossRef]
- Sun, S.; Wang, J.; Xiao, Y.; Peng, J.; Zhou, X. Few-shot RUL prediction for engines based on CNN-GRU model. Sci. Rep. 2024, 14, 16041. [Google Scholar] [CrossRef] [PubMed]
- Malhi, A.; Yan, R.; Gao, R.X. Prognosis of defect propagation based on recurrent neural networks. IEEE Trans. Instrum. Meas. 2011, 60, 703–711. [Google Scholar] [CrossRef]
- Liu, J.; Pan, C.; Lei, F.; Hu, D.; Zuo, H. Fault prediction of bearings based on LSTM and statistical process analysis. Reliab. Eng. Syst. Saf. 2021, 214, 107646. [Google Scholar]
- Han, G.J.; Shi, G.H.; Gou, L.F. A Reasoning Network Model for Aero-Engine RUL Prediction. Mini. Micro. Syst. 2022, 43, 1217–1220. [Google Scholar]
- Zhang, Y.; Guan, P. Health status characterization and RUL prediction method of escalator bearing based on VMD-GRU. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023. [Google Scholar]
- Xiao, L.; Liu, Z.; Zhang, Y.; Zheng, Y.; Cheng, C. Degradation assessment of bearings with trend-reconstruct-based features selection and gated recurrent unit network. Measurement 2020, 165, 108064. [Google Scholar]
- Li, X.; Li, J.; Qu, Y.; He, D. Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning. Chin. J. Aeronaut. 2020, 33, 418–426. [Google Scholar]
- Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [Google Scholar]
- Xiang, W.; Li, F.; Wang, J.; Tang, B. Quantum weighted gated recurrent unit neural network and its application in performance degradation trend prediction of rotating machinery. Neurocomputing 2018, 313, 85–95. [Google Scholar]
- Zhou, J.; Qin, Y.; Luo, J.; Wang, S.; Zhu, T. Dual-thread gated recurrent unit for gear remaining useful life prediction. IEEE Trans. Ind. Inform. 2022, 19, 8307–8318. [Google Scholar]
- Wu, Z. Research on Fault Diagnosis and Prediction Methods for Rotating Machinery and Their Applications. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2016. [Google Scholar]
- Xie, Y.; Zhang, T. A Long Short Term Memory Recurrent Neural Network Approach for Rotating Machinery Fault Prognosis. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018. [Google Scholar]
- Wang, X.; Meng, T.Y.; Zhou, J.X. Remaining Useful Life Prediction of Aero-Engine Based on Attention and LSTM. Sci. Technol. Eng. 2022, 22, 2784–2792. [Google Scholar]
- Zang, C.T.; Liu, R.R.; Yan, H.B. SMA-LSTM-Based Bearing Remaining Life Prediction Method. J. Jiangsu Inst. Technol. 2022, 28, 110–120. [Google Scholar]
- Zhao, Z.; Li, Q.; Yang, S.; Li, L. Research on Remaining Useful Life Prediction Based on BiLSTM and Attention Mechanism. J. Viration Shock. 2022, 41, 44–50+196. [Google Scholar]
- She, D.; Jia, M. A BiGRU method for remaining useful life prediction of machinery. Measurement 2021, 167, 108277. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar]
- Ding, H.; Yang, L.; Cheng, Z.; Yang, Z. A remaining useful life prediction method for bearing based on deep neural networks. Measurement 2021, 172, 108878. [Google Scholar]
- Yoo, Y.; Baek, J.-G. A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network. Appl. Sci. 2018, 8, 1102. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Ding, G. RUL prediction of rolling bearings based on improved empirical wavelet transform and convolutional neural network. Adv. Mech. Eng. 2022, 14, 16878132221106609. [Google Scholar] [CrossRef]
- Mo, R.P.; Li, T.M.; Si, X.S. Equipment Remaining Useful Life Prediction Method Using Residual Network and Convolutional Attention Mechanism. J. Xi’an Jiaotong Univ. 2022, 56, 194–202. [Google Scholar]
- Wang, X.; Qiao, D.; Han, K.; Chen, X.; He, Z. Research on predicting remain useful life of rolling bearing based on parallel deep residual network. Appl. Sci. 2022, 12, 4299. [Google Scholar] [CrossRef]
- He, K.; Su, Z.; Tian, X.; Yu, H.; Luo, M. RUL prediction of wind turbine gearbox bearings based on self-calibration temporal convolutional network. IEEE Trans. Instrum. Meas. 2022, 71, 3501912. [Google Scholar] [CrossRef]
- Li, P.; Liu, X.; Yang, Y. Remaining useful life prognostics of bearings based on a novel spatial graph-temporal convolution network. Sensors 2021, 21, 4217. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.P.; Si, X.S.; Li, T.M.; Zhu, X. Bearing Life Prediction Based on Multi-Scale Features and Attention Mechanism. J. Zhejiang Univ. Eng. Sci. 2022, 56, 1447–1456. [Google Scholar]
- Zou, W.; Ji, C.; Chen, W.X.; Zheng, K. Multi-Bearing Remaining Life Prediction Based on Data Augmentation and Convolutional Neural Network. J. Mech. Des. 2021, 38, 84–90. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Ekambaram, V.; Jati, A.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023. [Google Scholar]
- Chen, S.A.; Li, C.L.; Yoder, N.; Arik, S.O.; Pfister, T. Tsmixer: An all-mlp architecture for time series forecasting. arXiv 2023, arXiv:2303.06053. [Google Scholar]
- Zhang, J.; Tian, J.; Li, M.; Leon, J.I.; Franquelo, L.G.; Luo, H.; Yin, S. A Parallel Hybrid Neural Network With Integration of Spatial and Temporal Features for Remaining Useful Life Prediction in Prognostics. IEEE Trans. Instrum. Meas. 2023, 72, 3501112. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Tian, J.; Luo, H.; Yin, S. An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf. 2023, 233, 109096. [Google Scholar] [CrossRef]
- Sayah, M.; Guebli, D.; Al Masry, Z.; Zerhouni, N. Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans. 2021, 113, 28–38. [Google Scholar] [PubMed]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
Dataset | FD001 | FD003 | ||
---|---|---|---|---|
Metric | MSE | RMSE | MSE | RMSE |
BiGRU_TSAM | 0.0123 | 0.1113 | 0.0095 | 0.0975 |
IMDSSN | 0.0119 | 0.1092 | 0.0104 | 0.1021 |
LSTM | 0.0131 | 0.1145 | 0.0108 | 0.1041 |
MLP | 0.0148 | 0.1217 | 0.0142 | 0.1190 |
DMLP-GPT | 0.0110 | 0.1053 | 0.0079 | 0.0893 |
Dataset | C-MAPSS | |
---|---|---|
FD001 (Few-Shot) | FD003 (Few-Shot) | |
Training Set Size | 4104 | 4278 |
Test Set Size | 10,196 | 13,696 |
Validation Set Size | 3613 | 4009 |
Dataset | FD001 (Few-Shot) | FD003 (Few-Shot) | ||
---|---|---|---|---|
Metric | MSE | RMSE | MSE | RMSE |
BiGRU_TSAM | 0.0194 | 0.1392 | 0.0126 | 0.1122 |
IMDSSN | 0.0331 | 0.1819 | 0.0132 | 0.1147 |
LSTM | 0.0197 | 0.1404 | 0.0146 | 0.1210 |
MLP | 0.0203 | 0.1426 | 0.0162 | 0.1271 |
DMLP-GPT | 0.0149 | 0.1221 | 0.0122 | 0.1106 |
Dataset | FD001 | FD003 | ||
---|---|---|---|---|
Metric | MSE | RMSE | MSE | RMSE |
Without GPT | 0.0132 | 0.1107 | 0.0124 | 0.1114 |
Our | 0.0121 | 0.1098 | 0.0079 | 0.0893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Guo, X.; Yu, L. Leveraging Pre-Trained GPT Models for Equipment Remaining Useful Life Prognostics. Electronics 2025, 14, 1265. https://doi.org/10.3390/electronics14071265
Cui H, Guo X, Yu L. Leveraging Pre-Trained GPT Models for Equipment Remaining Useful Life Prognostics. Electronics. 2025; 14(7):1265. https://doi.org/10.3390/electronics14071265
Chicago/Turabian StyleCui, Haoliang, Xiansheng Guo, and Liyang Yu. 2025. "Leveraging Pre-Trained GPT Models for Equipment Remaining Useful Life Prognostics" Electronics 14, no. 7: 1265. https://doi.org/10.3390/electronics14071265
APA StyleCui, H., Guo, X., & Yu, L. (2025). Leveraging Pre-Trained GPT Models for Equipment Remaining Useful Life Prognostics. Electronics, 14(7), 1265. https://doi.org/10.3390/electronics14071265