Neurosynaptic Core Prototype for Memristor Crossbar Arrays Diagnostics
Abstract
1. Introduction
- A modular architecture for independent validation and testing of subsystems.
- An automated measurement suite for efficient characterization of I-V curves, retention, and endurance.
- A unipolar pulse switching scheme to mitigate gate-oxide breakdown risks in transistor-integrated arrays, enhancing testing reliability.
- A scalable switching circuit that supports arrays of up to 64 × 64 elements while minimizing the number of analog components.
2. Methods and Prototype Overview
- Control module.
- DAC module (signal generation).
- Current control module.
- Switching module.
- Current to voltage (I-to-V) converter module.
- ADC module (signal digitization).
- Power supply module.
- Interface module (integrating all components into a unified system).
3. Results
4. Discussion
4.1. Comparison with State-of-the-Art Neurosynaptic Core Prototypes
4.2. Vector-Matrix Multiplication Capability
4.3. Challenges and Strategies for Miniaturization and Large-Scale Integration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| GPU | Graphics Processing Unit |
| DAC | Digital to Analog Converter |
| ADC | Analog to Digital Converter |
| SoC | System on Chip |
| SoM | System-on-Module |
| ARM | Advanced RISC machine |
| SPI | Serial Peripheral Interface |
| UART | Universal Asynchronous Receiver-Transmitter |
| USB | Universal Serial Bus |
| RS | Resistive Switching |
| PCB | Printed Circuit Board |
| CMOS | Complementary Metal-Oxide-Semiconductor |
| IC | Integrated circuit |
| VMM | Vector-Matrix Multiplication |
References
- Mienye, I.D.; Swart, T.G. A Comprehensive Review of Deep Learning: Architectures, Recent Advances, and Applications. Information 2024, 15, 755. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative AI. Bus. Inf. Syst. Eng. 2024, 66, 111–126. [Google Scholar] [CrossRef]
- Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv 2025, arXiv:2501.12948. [Google Scholar] [CrossRef]
- Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; Volume 45. pp. 1–12. [Google Scholar] [CrossRef]
- Jouppi, N.; Kurian, G.; Li, S.; Ma, P.; Nagarajan, R.; Nai, L.; Patil, N.; Subramanian, S.; Swing, A.; Towles, B.; et al. TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings. In Proceedings of the 50th Annual International Symposium on Computer Architecture, Orlando, FL, USA, 17–21 June 2023; pp. 1147–1160. [Google Scholar] [CrossRef]
- Sada, M.F.; Graham, J.J.; Khoda, E.E.; Tatineni, M.; Mishin, D.; Gupta, R.K.; Wagner, R.; Smarr, L.; DeFanti, T.A.; WÞrthwein, F. Serving LLMs in HPC Clusters: A Comparative Study of Qualcomm Cloud AI 100 Ultra and High-Performance GPUs. arXiv 2025, arXiv:2507.00418. [Google Scholar] [CrossRef]
- Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.J.; et al. TrueNorth: Design and Tool Flow of a 65 MW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [Google Scholar] [CrossRef]
- Modha, D.S.; Akopyan, F.; Andreopoulos, A.; Appuswamy, R.; Arthur, J.V.; Cassidy, A.S.; Datta, P.; DeBole, M.V.; Esser, S.K.; Otero, C.O.; et al. Neural Inference at the Frontier of Energy, Space, and Time. Science 2023, 382, 329–335. [Google Scholar] [CrossRef]
- Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [Google Scholar] [CrossRef]
- Deng, L.; Wang, G.; Li, G.; Li, S.; Liang, L.; Zhu, M.; Wu, Y.; Yang, Z.; Zou, Z.; Pei, J.; et al. Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation. IEEE J. Solid-State Circuits 2020, 55, 2228–2246. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X.; Ye, C. A Review of Memristor: Material and Structure Design, Device Performance, Applications and Prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Aziza, H. Image Classification in Memristor-Based Neural Networks: A Comparative Study of Software and Hardware Models Using RRAM Crossbars. Electronics 2025, 14, 1125. [Google Scholar] [CrossRef]
- Morell, A.; Machado, E.D.; Miranda, E.; Boquet, G.; Vicario, J.L. Ternary Neural Networks Based on on/off Memristors: Set-Up and Training. Electronics 2022, 11, 1526. [Google Scholar] [CrossRef]
- Ali, K.A.; Rizk, M.; Baghdadi, A.; Diguet, J.-P.; Jomaah, J. Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL. Electronics 2021, 10, 1018. [Google Scholar] [CrossRef]
- Iliasov, A.I.; Matsukatova, A.N.; Emelyanov, A.V.; Slepov, P.S.; Nikiruy, K.E.; Rylkov, V.V. Adapted MLP-Mixer network based on crossbar arrays of fast and multilevel switching (Co–Fe–B)x(LiNbO3)100-x nanocomposite memristors. Nanoscale Horiz. 2024, 9, 238–247. [Google Scholar] [CrossRef]
- Matsukatova, A.N.; Iliasov, A.I.; Nikiruy, K.E.; Kukueva, E.V.; Vasiliev, A.L.; Goncharov, B.V.; Sitnikov, A.V.; Zanaveskin, M.L.; Bugaev, A.S.; Demin, V.A.; et al. Convolutional Neural Network Based on Crossbar Arrays of (Co-Fe-B)x(LiNbO3)100−x Nanocomposite Memristors. Nanomaterials 2022, 12, 3455. [Google Scholar] [CrossRef]
- Kataeva, I.; Ohtsuka, S.; Nili, H.; Kim, H.; Isobe, Y.; Yako, K.; Strukov, D. Towards the Development of Analog Neuromorphic Chip Prototype with 2.4M Integrated Memristors. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, F.; Wang, S.; Serb, A.; Prodromakis, T. Memristor-Controlled Reconfigurable N-path Filter Structure Design and Comparison. Electronics 2025, 14, 1858. [Google Scholar] [CrossRef]
- Feng, T.; Deng, S.; Chen, X.; Zhang, C.; Mao, Y. A Generalized Type-2 Fuzzy-Based Analog Memristive Controller. Electronics 2025, 14, 1178. [Google Scholar] [CrossRef]
- Aguirre, F.; Sebastian, A.; Le Gallo, M.; Song, W.; Wang, T.; Yang, J.J.; Lu, W.; Chang, M.-F.; Ielmini, D.; Yang, Y.; et al. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 2024, 15, 1974. [Google Scholar] [CrossRef]
- Song, W.; Rao, M.; Li, Y.; Li, C.; Zhuo, Y.; Cai, F.; Wu, M.; Yin, W.; Li, Z.; Wei, Q.; et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science 2024, 383, 903–910. [Google Scholar] [CrossRef]
- Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C. Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar Arrays. Nanoscale Adv. 2020, 2, 1811–1827. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Li, S.; Zheng, H.; Li, L.; Fong, X.; Ang, K.-W. Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks. Nat. Commun. 2025, 16, 2719. [Google Scholar] [CrossRef] [PubMed]
- Demin, V.A.; Surazhevsky, I.A.; Emelyanov, A.V.; Kashkarov, P.K.; Kovalchuk, M.V. Sneak, discharge, and leakage current issues in a high-dimensional 1T1M memristive crossbar. J. Comput. Electron. 2020, 19, 565–575. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully Hardware-Implemented Memristor Convolutional Neural Network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Wan, W.; Kubendran, R.; Schaefer, C.; Eryilmaz, S.B.; Zhang, W.; Wu, D.; Deiss, S.; Raina, P.; Qian, H.; Gao, B.; et al. Compute-in-Memory Chip Based on Resistive Random-Access Memory. Nature 2022, 608, 504–512. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Wang, T.; Wang, Z.; Xu, Y.; Rao, M.; Cai, F.; Yin, W.; Chen, M.S.-W.; Ge, N.; et al. Real-time signal processing enabled by fused networks on a memristor-based system on a chip. Sci. Adv. 2025, 11, eadv3436. [Google Scholar] [CrossRef]
- Yu, R.; Wang, Z.; Liu, Q.; Gao, B.; Hao, Z.; Guo, T.; Ding, S.; Zhang, J.; Qin, Q.; Wu, D.; et al. A full-stack memristor-based computation-in-memory system with software-hardware co-development. Nat. Commun. 2025, 16, 2123. [Google Scholar] [CrossRef]
- Khwa, W.-S.; Wen, T.-H.; Hsu, H.-H.; Huang, W.-H.; Chang, Y.-C.; Chiu, T.-C.; Ke, Z.-E.; Chin, Y.-H.; Wen, H.-J.; Hsu, W.-T.; et al. A mixed-precision memristor and SRAM compute-in-memory AI processor. Nature 2025, 639, 617–623. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.-B.; Fang, X.; Cao, J.-M.; Zhang, B.-K.; Pan, J.-W.; Liu, D.-H.; Liu, S.-H.; Jiao, S.-J.; Chen, T.-Y.; et al. Review of 2D Bi2X3 (X = S, Se, Te): From preparation to photodetector. Rare Met. 2024, 43, 2349–2370. [Google Scholar] [CrossRef]
- Zhu, Z.-K.; Li, Z.-Y.; Qin, Z.; Wang, Y.-M.; Wang, D.; Zeng, X.-H.; Liu, F.-Y.; Dong, H.-L.; Hu, Q.-Y.; Kong, L.-P.; et al. Pressure-driven metallization with significant changes of structural and photoelectric properties in two-dimensional EuSbTe3. Rare Met. 2024, 43, 5943–5952. [Google Scholar] [CrossRef]
- Martyshov, M.; Emelyanov, A.; Demin, V.; Nikiruy, K.; Minnekhanov, A.; Nikolaev, S.; Taldenkov, A.; Ovcharov, A.; Presnyakov, M.Y.; Sitnikov, A.; et al. Multifilamentary Character of Anticorrelated Capacitive and Resistive Switching in Memristive Structures Based on (Co−Fe−B)x(LiNbO3)100−x Nanocomposite. Phys. Rev. Appl. 2020, 14, 034016. [Google Scholar] [CrossRef]
- Surazhevsky, I.A.; Chernoglazov, K.Y.; Alyaev, I.V.; Grischenko, Y.V.; Ichyotkin, D.V.; Emelyanov, A.V.; Grigoriev, T.E.; Kalyonov, A.D.; Iliasov, A.I.; Demin, V.A.; et al. Resistive Memory in 2T1R Architecture Based on Si MOSFETs and Nanocomposite Memristors. Nanobiotechnol. Rep. 2024, 19, 468–474. [Google Scholar] [CrossRef]
- Yashkov, I.I.; Surazhevsky, I.A.; Demin, V.A. Algorithm for Recording Synaptic Weights into a Memristor Matrix of Crossbar Elements. Nanobiotechnol. Rep. 2023, 18, 977–985. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyaev, I.V.; Surazhevsky, I.A.; Ichyotkin, D.V.; Rylkov, V.V.; Demin, V.A. Neurosynaptic Core Prototype for Memristor Crossbar Arrays Diagnostics. Electronics 2025, 14, 4965. https://doi.org/10.3390/electronics14244965
Alyaev IV, Surazhevsky IA, Ichyotkin DV, Rylkov VV, Demin VA. Neurosynaptic Core Prototype for Memristor Crossbar Arrays Diagnostics. Electronics. 2025; 14(24):4965. https://doi.org/10.3390/electronics14244965
Chicago/Turabian StyleAlyaev, Ivan V., Igor A. Surazhevsky, Dmitry V. Ichyotkin, Vladimir V. Rylkov, and Vyacheslav A. Demin. 2025. "Neurosynaptic Core Prototype for Memristor Crossbar Arrays Diagnostics" Electronics 14, no. 24: 4965. https://doi.org/10.3390/electronics14244965
APA StyleAlyaev, I. V., Surazhevsky, I. A., Ichyotkin, D. V., Rylkov, V. V., & Demin, V. A. (2025). Neurosynaptic Core Prototype for Memristor Crossbar Arrays Diagnostics. Electronics, 14(24), 4965. https://doi.org/10.3390/electronics14244965
