From Forecasting to Foresight: Building an Autonomous O&M Brain for the New Power System Based on a Cognitive Digital Twin
Abstract
1. Introduction
2. Related Work
2.1. The Evolution of Digital Twins in Critical Infrastructure
2.2. The Emergence of Cognitive Digital Twins
2.3. Digital Twins as Enablers for Autonomous O&M
2.4. State-of-the-Art in Power System Forecasting and Fault Detection
2.4.1. Load and Energy Forecasting
2.4.2. Fault and Anomaly Detection
2.5. The Research Gap: From Reactive Detection to Proactive Foresight
3. Methodology: The Cognitive Digital Twin Framework
3.1. Problem Formulation and Notation
3.2. System Architecture
3.3. The Cognitive Core: Fusing Knowledge and Language
3.3.1. Knowledge Graph Representation
3.3.2. Contextual Information Encoding
3.3.3. Explainable Decision Generation via KG–LLM Reasoning
3.4. The Predictive and Diagnostic Layer
3.4.1. Stage 1: Cognitive-Enhanced State Prediction
3.4.2. Stage 2: Anomaly Quantification via Predictive Divergence
4. Key Technologies and Implementation
4.1. Large Language Model Integration
4.2. Knowledge Graph Construction
4.3. Prediction-Based Anomaly Detection
4.4. Intelligent Module Orchestration
5. Case Study: Super Typhoon Scenario
5.1. Scenario Overview
5.2. Pre-Event Phase (T-48 to T-24 h)
5.3. Critical Phase (T-24 to T-0 h)
5.4. Event Phase (T-0 to T+12 h)
5.5. Recovery Phase (T+12 to T+24 h)
6. Experimental Validation
6.1. Experimental Setup
6.1.1. Datasets and Preprocessing
6.1.2. Prototype Implementation: The Cognitive-Enhanced Anomaly Detector
6.1.3. Baseline Methods for Comparison
6.1.4. Evaluation Metrics
6.2. Results: Context-Aware Load Forecasting Performance
6.3. Results: Pre-Fault Anomaly Detection Performance
6.4. Ablation Study: Impact of Cognitive Context on Detection
6.5. Computational Performance
7. Discussion
7.1. Technological Implications
7.2. Operational Benefits
7.3. Challenges and Limitations
7.4. Scalability and Generalizability
7.5. Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoud, M.A.; Md Nasir, N.R.; Gurunathan, M.; Raj, P.; Mostafa, S.A. The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—A systematic review. Energies 2021, 14, 5078. [Google Scholar] [CrossRef]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.A. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 62. [Google Scholar] [CrossRef]
- Guato Burgos, M.F.; Morato, J.; Vizcaino Imacaña, F.P. A review of smart grid anomaly detection approaches pertaining to artificial intelligence. Appl. Sci. 2024, 14, 1194. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Jin, M.; Wang, S.; Ma, L.; Chu, Z.; Zhang, J.Y.; Shi, X.; Chen, P.Y.; Liang, Y.; Li, Y.F.; Pan, S.; et al. Time-llm: Time series forecasting by reprogramming large language models. arXiv 2023, arXiv:2310.01728. [Google Scholar]
- Madani, S.; Tavasoli, A.; Astaneh, Z.K.; Pineau, P.O. Large Language Models integration in Smart Grids. arXiv 2025, arXiv:2504.09059. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ma, C.; Kou, L. A survey on the development status and application prospects of knowledge graph in smart grids. IET Gener. Transm. Distrib. 2021, 15, 383–407. [Google Scholar] [CrossRef]
- Lim, K.Y.H.; Yosal, T.S.; Chen, C.H.; Zheng, P.; Wang, L.; Xu, X. Graph-enabled cognitive digital twins for causal inference in maintenance processes. Int. J. Prod. Res. 2024, 62, 4717–4734. [Google Scholar] [CrossRef]
- Zhao, Y.; Smidts, C. Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states. Reliab. Eng. Syst. Saf. 2022, 224, 108541. [Google Scholar] [CrossRef]
- Gao, S.; Yu, K.; Yang, Y.; Yu, S.; Shi, C.; Wang, X.; Tang, N.; Zhu, H. Large language model powered knowledge graph construction for mental health exploration. Nat. Commun. 2025, 16, 7526. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, M. Cognitive Digital Twin for Power System Operations: A Comprehensive Review. IEEE Trans. Smart Grid 2023, 14, 1234–1245. [Google Scholar]
- Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al. Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Khan, A.; Smith, K.; Romero, J.; Shen, X.; Shirowzhan, S.; Li, H.; Tahmasebinia, F. BIM and Digital Twin for Developing Convergence Technologies as Future of Digital Construction. Buildings 2023, 13, 441. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital Twins in Smart Farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing Digital Twins to Agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Li, H.; Hong, T. A Digital Twin Platform for Building Performance Monitoring and Optimization: Performance Simulation and Case Studies. Build. Simul. 2025, 18, 1561–1579. [Google Scholar] [CrossRef]
- Choobkar, S.; Mohsen Hashemi, S. Digital Twin Technology for Smart Grid; SpringerBriefs in Energy, Springer Nature: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Peng, M.; Xu, R.; Yu, Y.; Zhou, G. Digital Twin Based Operation Support System of Nuclear Power Plant. In Proceedings of the 2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI), Boston, MA, USA, 24–28 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Muthirayan, D.; Yu, S.Y.; Khargonekar, P.P. Cognitive Digital Twin for Manufacturing Systems. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 14 September 2021; pp. 440–445. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, J.; Kiritsis, D. The Emergence of Cognitive Digital Twin: Vision, Challenges and Opportunities. Int. J. Prod. Res. 2022, 60, 7610–7632. [Google Scholar] [CrossRef]
- Yao, Z.; Wu, H.; Song, Y.; Cheng, Y.; Pan, H.; Wu, M.; Li, M.; Qin, G.; Wang, Q.; Zhang, X. Surrogate Model-Based Cognitive Digital Twin for Smart Remote Maintenance of Fusion Reactor: Modeling and Implementation. Nucl. Fusion 2024, 64, 126007. [Google Scholar] [CrossRef]
- Zheng, X.; Petrali, P.; Lu, J.; Turrin, C.; Kiritsis, D. RMPFQ: A Quality-Oriented Knowledge Modelling Method for Manufacturing Systems Towards Cognitive Digital Twins. Front. Manuf. Technol. 2022, 2, 901364. [Google Scholar] [CrossRef]
- Li, X.; He, B.; Wang, Z.; Zhou, Y.; Li, G. Towards Cognitive Digital Twin System of Human-Robot Collaboration Manipulation. IEEE Trans. Autom. Sci. Eng. 2024, 22, 6677–6690. [Google Scholar] [CrossRef]
- Adu-Kankam, K.O.; Camarinha-Matos, L.M. Modeling Collaborative Behaviors in Energy Ecosystems. Computers 2023, 12, 39. [Google Scholar] [CrossRef]
- Diao, J.; Tang, R.; Gu, Y.; Tian, S.; Jiang, Z. Cognitive-Digital-Twin-Based Driving Assistance. IEEE Robot. Autom. Lett. 2023, 8, 5188–5195. [Google Scholar] [CrossRef]
- Zhang, N.; Bahsoon, R.; Theodoropoulos, G. Towards Engineering Cognitive Digital Twins with Self-Awareness. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; p. 3891. [Google Scholar] [CrossRef]
- Khan, S.; Farnsworth, M.; McWilliam, R.; Erkoyuncu, J. On the Requirements of Digital Twin-Driven Autonomous Maintenance. Annu. Rev. Control 2020, 50, 13–28. [Google Scholar] [CrossRef]
- Liu, G.; Deng, J.; Zhu, Y.; Li, N.; Han, B.; Wang, S.; Rui, H.; Wang, J.; Zhang, J.; Cui, Y.; et al. 6G Autonomous Radio Access Network Empowered by Artificial Intelligence and Network Digital Twin. Front. Inf. Technol. Electron. Eng. 2025, 26, 161–213. [Google Scholar] [CrossRef]
- Chen, X.; Eder, M.A.; Shihavuddin, A. A Concept for a Human-Cyber-Physical System toward Intelligent Wind Turbine Operation and Maintenance. Sustainability 2021, 13, 561. [Google Scholar] [CrossRef]
- Cavus, M. Advancing Power Systems with Renewable Energy and Intelligent Technologies: A Comprehensive Review on Grid Transformation and Integration. Electronics 2025, 14, 1159. [Google Scholar] [CrossRef]
- Binbusayyis, A.; Sha, M. Energy Consumption Prediction Using Modified Deep CNN-Bi LSTM with Attention Mechanism. Heliyon 2025, 11, e41507. [Google Scholar] [CrossRef]
- Ganesh, P.M.J.; Sundaram, B.M.; Balachandran, P.K.; Zainuri, M.A.A.M. Syner-Dandelion Optimization Integrated Temporal Recurrent Transformer Network for Accurate Energy Load Forecasting in IoT-Smart Grids. IEEE Internet Things J. 2025, 12, 41752–41770. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.K. Spatial-Temporal Graph Convolutional-Based Recurrent Network for Electric Vehicle Charging Stations Demand Forecasting in Energy Market. IEEE Trans. Smart Grid 2024, 15, 3979–3993. [Google Scholar] [CrossRef]
- Li, H.; Qu, H.; Tan, X.; You, L.; Zhu, R.; Fan, W. UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction. Sci. Data 2025, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Ching, K.B.; Uttraphan, C.; Tay, K.G.; Noor, A. Evaluating Machine Learning Algorithms for Energy Consumption Prediction in Electric Vehicles: A Comparative Study. Sci. Rep. 2025, 15, 16124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, W.; He, Q.; Xu, J. Optimization of Microgrid Dispatching by Integrating Photovoltaic Power Generation Forecast. Sustainability 2025, 17, 648. [Google Scholar] [CrossRef]
- Ma, H.; Saha, T.K.; Ekanayake, C.; Martin, D. Smart Transformer for Smart Grid—Intelligent Framework and Techniques for Power Transformer Asset Management. IEEE Trans. Smart Grid 2015, 6, 1026–1034. [Google Scholar] [CrossRef]
- Alhanaf, A.S.; Farsadi, M.; Balik, H.H. Fault Detection and Classification in Ring Power System With DG Penetration Using Hybrid CNN-LSTM. IEEE Access 2024, 12, 59953–59975. [Google Scholar] [CrossRef]
- Anwar, T.; Mu, C.; Yousaf, M.Z.; Khan, W.; Khalid, S.; Hourani, A.O.; Zaitsev, I. Robust Fault Detection and Classification in Power Transmission Lines via Ensemble Machine Learning Models. Sci. Rep. 2025, 15, 2549. [Google Scholar] [CrossRef]
- Quiles-Cucarella, E.; Sánchez-Roca, P.; Agustí-Mercader, I. Performance Optimization of Machine-Learning Algorithms for Fault Detection and Diagnosis in PV Systems. Electronics 2025, 14, 1709. [Google Scholar] [CrossRef]
- Mahmoud, R.A. Transmission Line Faults Detection and Classification Using New Tripping Characteristics Based on Statistical Coherence for Current Measurements. Sci. Rep. 2025, 15, 8487. [Google Scholar] [CrossRef]
- Dubey, K.; Jena, P. Novel Fault Detection & Classification Index for Active Distribution Network Using Differential Components. IEEE Trans. Ind. Appl. 2024, 60, 4530–4540. [Google Scholar] [CrossRef]
- Lu, G.; Liu, S.; Xie, F.; Wang, Y.; Wu, M.; Kang, Y. Sensitivity Enhancement via Tellegen’s Quasi-power Theorem: A New Method for Transformer Early Fault Detection. IEEE Trans. Power Deliv. 2025. [Google Scholar] [CrossRef]
- Hou, C.; Lou, A.; Wu, Y.; Luan, A.; Shao, S. An Enhanced Over-Current Fault Detection System for a 7.2 kV Power Module Using Series-Connected SiC MOSFETs. In Proceedings of the 2025 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Beijing, China, 10–12 November 2025; pp. 1–5. [Google Scholar] [CrossRef]
- M K P, M.R.; Ahmad, M.W. A Robust Open Circuit Fault Detection and Localization Scheme for HERIC PV Inverter. IEEE Trans. Ind. Electron. 2025, 72, 8633–8645. [Google Scholar] [CrossRef]
- Kim, B.; Kim, M.; Kim, W.; Park, H.P. DC Series Arc Fault Detection Capability with Frequency Spectrum Analysis Using LCL-Type Boost Converter for PV Applications. IEEE Trans. Energy Convers. 2025, 40, 2205–2216. [Google Scholar] [CrossRef]
- Li, M.; Yu, D.; Yu, S.S.; Li, X.; Geng, H. Enhanced Fault Detection, Localization, and Tolerance Strategy for Dual Active Bridge DC–DC Converters Through Frequency-Domain Analysis of Remote Voltage. IEEE Trans. Ind. Electron. 2025, 72, 10847–10858. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kishor, N.; Mohanty, S.R.; Samuel, P. Intelligent Fault Detection and Classification for an Unbalanced Network With Inverter-Based DG Units. IEEE Trans. Ind. Inform. 2024, 20, 7325–7334. [Google Scholar] [CrossRef]
- Lin, W.; Miao, X.; Chen, J.; Duan, P.; Ye, M.; Xu, Y.; Liu, X.; Jiang, H.; Lu, Y. Fault Detection for Ex-Core Neutron Detectors in Nuclear Power Plants Using Global-Fused Dynamic Detection Model. IEEE Trans. Instrum. Meas. 2025, 74, 3511615. [Google Scholar] [CrossRef]
- Lin, W.; Miao, X.; Chen, J.; Ye, M.; Zhang, L.; Xu, Y.; Liu, X.; Jiang, H.; Lu, Y. ST-SAM: Spatial-Temporal State Adaptation Model for Neutron Detector Fault Detection and Isolation in Nuclear Power Plants. IEEE Trans. Ind. Inform. 2025, 21, 1110–1119. [Google Scholar] [CrossRef]
- Tan, J.; Radhi, R.M.; Shirini, K.; Gharehveran, S.S.; Parisooz, Z.; Khosravi, M.; Azarinfar, H. Innovative Framework for Fault Detection and System Resilience in Hydropower Operations Using Digital Twins and Deep Learning. Sci. Rep. 2025, 15, 15669. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fang, F.; Qiu, R. Data-Driven Modeling in Digital Twin for Power System Anomaly Detection. Digit. Twin 2024, 4, 5. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, X.; Song, Y.; Wang, Y.; Zhou, Y.; Zhu, H.; Zhang, L.; Fan, Y.; Guo, Z.; Huang, S.; et al. Optical Power Control for GSNR Optimization Based on C+L-Band Digital Twin Systems. J. Light. Technol. 2024, 42, 95–105. [Google Scholar] [CrossRef]
- Wang, X.; Feng, M.; Qiu, J.; Gu, J.; Zhao, J. From news to forecast: Integrating event analysis in llm-based time series forecasting with reflection. Adv. Neural Inf. Process. Syst. 2024, 37, 58118–58153. [Google Scholar]
- Wang, L.; Zhang, W. Prediction-Based Anomaly Detection in Power Grid Operations. In Proceedings of the IEEE Power & Energy Society General Meeting, Orlando, FL, USA, 16–20 July 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Baek, M.; Seo, Y. Hybrid forecasting of university electricity demand using time series and deep learning. Energy Build. 2025, 347, 116400. [Google Scholar] [CrossRef]
- Zhang, L.; Jánošík, D. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 2024, 241, 122686. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Zhang, R.; Wei, A.; Xie, J.; Pang, X. A survey of deep anomaly detection in multivariate time series: Taxonomy, applications, and directions. Sensors 2025, 25, 190. [Google Scholar] [CrossRef] [PubMed]
- Pappas, S.S.; Ekonomou, L.; Karamousantas, D.C.; Chatzarakis, G.; Katsikas, S.; Liatsis, P. Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models. Energy 2008, 33, 1353–1360. [Google Scholar] [CrossRef]
- Hong, W.C. Electric load forecasting by support vector model. Appl. Math. Model. 2009, 33, 2444–2454. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. itransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, QLD, Australia, 2 December 2014; pp. 4–11. [Google Scholar]




| Model | MAPE (%) | RMSE (MW) |
|---|---|---|
| ARIMA | 4.12 | 112.5 |
| SVR | 3.58 | 98.7 |
| Standard LSTM | 2.15 | 61.3 |
| Temporal Fusion Transformer | 1.95 | 55.0 |
| iTransformer | 1.80 | 50.5 |
| CEAD (Context-Aware) | 1.41 | 39.6 |
| Model | Precision (%) | Recall (%) | F1-Score (%) | Avg. Detection Time (s) |
|---|---|---|---|---|
| Thresholding | 72.4 | 68.5 | 70.4 | >5.0 (Missed) |
| Isolation Forest | 81.3 | 75.9 | 78.5 | 3.8 |
| Autoencoder | 85.7 | 83.3 | 84.5 | 3.1 |
| TFT-based Detector | 90.0 | 88.0 | 89.0 | 2.7 |
| CEAD | 94.1 | 92.6 | 93.3 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Chen, Z.; Jiang, H.; Luo, S.; Zhao, Y.; Zhao, D.; Dang, P.; Gao, J.; Lin, L.; Wang, H. From Forecasting to Foresight: Building an Autonomous O&M Brain for the New Power System Based on a Cognitive Digital Twin. Electronics 2025, 14, 4537. https://doi.org/10.3390/electronics14224537
Wu X, Chen Z, Jiang H, Luo S, Zhao Y, Zhao D, Dang P, Gao J, Lin L, Wang H. From Forecasting to Foresight: Building an Autonomous O&M Brain for the New Power System Based on a Cognitive Digital Twin. Electronics. 2025; 14(22):4537. https://doi.org/10.3390/electronics14224537
Chicago/Turabian StyleWu, Xufeng, Zuowei Chen, Hefang Jiang, Shoukang Luo, Yi Zhao, Dongwei Zhao, Peiyao Dang, Jiajun Gao, Lin Lin, and Hao Wang. 2025. "From Forecasting to Foresight: Building an Autonomous O&M Brain for the New Power System Based on a Cognitive Digital Twin" Electronics 14, no. 22: 4537. https://doi.org/10.3390/electronics14224537
APA StyleWu, X., Chen, Z., Jiang, H., Luo, S., Zhao, Y., Zhao, D., Dang, P., Gao, J., Lin, L., & Wang, H. (2025). From Forecasting to Foresight: Building an Autonomous O&M Brain for the New Power System Based on a Cognitive Digital Twin. Electronics, 14(22), 4537. https://doi.org/10.3390/electronics14224537
