Understanding the Long-Term Instability in Perovskite Solar Cells: Mechanisms and Mitigation Strategies
Abstract
1. Introduction
2. Internal Degradation Pathways and Mitigation Strategies
2.1. Ion-Migration-Induced Degradation
Mitigation Strategies

2.2. Defects-Induced Degradation
Mitigation Strategies

2.3. Charge-Transport-Layer-Induced Degradation
Mitigation Strategies

2.4. Electrode-Material-Induced Degradation
Mitigation Strategies

3. External Degradation Pathways and Mitigation Strategies
3.1. Moisture-Induced Degradation
Mitigtation Strategies

3.2. Temperature-Induced Degradation
Mitigation Strategies

3.3. Illumination and Oxygen-Induced Degradation
Mitigation Strategies

4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leijtens, T.; Eperon, G.E.; Noel, N.K.; Habisreutinger, S.N.; Petrozza, A.; Snaith, H.J. Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1500963. [Google Scholar] [CrossRef]
- Rajbhandari, P.P.; Dhakal, T.P. Limit of Incorporating Cesium Cations into Formamidinium-Methylammonium Based Mixed Halide Perovskite Solar Cells. Nanotechnology 2020, 31, 135406. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef]
- Jodlowski, A.D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; De Miguel, G.; Nazeeruddin, M.K. Large Guanidinium Cation Mixed with Methylammonium in Lead Iodide Perovskites for 19% Efficient Solar Cells. Nat. Energy 2017, 2, 972–979. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L.E.; Lee, S.; Park, S.; Park, H.; Schubert, M.C.; et al. UV Degradation and Recovery of Perovskite Solar Cells. Sci. Rep. 2016, 6, 38150. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 23 February 2025).
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. Res. Appl. 2013, 21, 12–29. [Google Scholar] [CrossRef]
- Roesch, R.; Faber, T.; Von Hauff, E.; Brown, T.M.; Lira-Cantu, M.; Hoppe, H. Procedures and Practices for Evaluating Thin-Film Solar Cell Stability. Adv. Energy Mater. 2015, 5, 1501407. [Google Scholar] [CrossRef]
- Rolston, N.; Printz, A.D.; Tracy, J.M.; Weerasinghe, H.C.; Vak, D.; Jia Haur, L.; Priyadarshi, A.; Mathews, N.; Slotcavage, D.J.; McGehee, M.D.; et al. Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1702116. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Bin Zafar, M.A.; Sajjad-Ul Islam, M.; Shahinuzzaman, M.; Islam, M.A.; Khandaker, M.U. Stability of Perovskite Solar Cells: Issues and Prospects. RSC Adv. 2023, 13, 1787–1810. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Hu, Y.; Mei, A.; Han, H. Degradation Pathways in Perovskite Solar Cells and How to Meet International Standards. Commun. Mater. 2022, 3, 58. [Google Scholar] [CrossRef]
- Zhu, H.; Teale, S.; Lintangpradipto, M.N.; Mahesh, S.; Chen, B.; McGehee, M.D.; Sargent, E.H.; Bakr, O.M. Long-Term Operating Stability in Perovskite Photovoltaics. Nat. Rev. Mater. 2023, 8, 569–586. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.H.; Jiang, Y.; Hu, J.S. Instability of Solution-Processed Perovskite Films: Origin and Mitigation Strategies. Mater. Futures 2023, 2, 012102. [Google Scholar] [CrossRef]
- Mazumdar, S.; Zhao, Y.; Zhang, X. Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Front. Electron. 2021, 2, 712785. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, S.; Zhang, X.; Wang, A.; Wu, C.; Hao, F.; Zhu, W.; Wang, S.; Zhang, X.; Wang, A.; et al. Ion Migration in Organic–Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. Small 2022, 18, 2105783. [Google Scholar] [CrossRef]
- Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. J. Am. Chem. Soc. 2015, 137, 10048–10051. [Google Scholar] [CrossRef]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy Environ. Sci. 2015, 8, 2118–2127. [Google Scholar] [CrossRef]
- Eames, C.; Frost, J.M.; Barnes, P.R.F.; O’regan, B.C.; Walsh, A.; Saiful Islam, M. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. Nat. Mater. 2014, 14, 193–198. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S.; Lee, S.W.; Cho, K.; Lee, K.D.; Kim, H.; Park, S.; Kwon, G.; Ahn, S.W.; Lee, H.M.; et al. Relationship between Ion Migration and Interfacial Degradation of CH3NH3PbI3 Perovskite Solar Cells under Thermal Conditions. Sci. Rep. 2017, 7, 1200. [Google Scholar] [CrossRef]
- Besleaga, C.; Abramiuc, L.E.; Stancu, V.; Tomulescu, A.G.; Sima, M.; Trinca, L.; Plugaru, N.; Pintilie, L.; Nemnes, G.A.; Iliescu, M.; et al. Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. J. Phys. Chem. Lett. 2016, 7, 5168–5175. [Google Scholar] [CrossRef] [PubMed]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2014, 6, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Thiesbrummel, J.; Shah, S.; Gutierrez-Partida, E.; Zu, F.; Peña-Camargo, F.; Zeiske, S.; Diekmann, J.; Ye, F.; Peters, K.P.; Brinkmann, K.O.; et al. Ion-Induced Field Screening as a Dominant Factor in Perovskite Solar Cell Operational Stability. Nat. Energy 2024, 9, 664–676. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu3+-Eu2+ Ion Redox Shuttle Imparts Operational Durability to Pb-I Perovskite Solar Cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef]
- McGovern, L.; Futscher, M.H.; Muscarella, L.A.; Ehrler, B. Understanding the Stability of MAPbBr3 versus MAPbI3: Suppression of Methylammonium Migration and Reduction of Halide Migration. J. Phys. Chem. Lett. 2020, 11, 7127–7132. [Google Scholar] [CrossRef]
- Bi, E.; Song, Z.; Li, C.; Wu, Z.; Yan, Y. Mitigating Ion Migration in Perovskite Solar Cells. Trends Chem. 2021, 3, 575–588. [Google Scholar] [CrossRef]
- Rivkin, B.; Fassl, P.; Sun, Q.; Taylor, A.D.; Chen, Z.; Vaynzof, Y. Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells. ACS Omega 2018, 3, 10042–10047. [Google Scholar] [CrossRef]
- Zhang, H.; Park, N.G. Strain Control to Stabilize Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202212268. [Google Scholar] [CrossRef]
- Dailey, M.; Li, Y.; Printz, A.D. Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies. ACS Omega 2021, 6, 30214–30223. [Google Scholar] [CrossRef]
- Cao, J.; Tao, S.X.; Bobbert, P.A.; Wong, C.P.; Zhao, N. Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration. Adv. Mater. 2018, 30, e1707350. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandari, P.P.; Rijal, B.; Chen, Z.; Choudhary, A.; Efstathiadis, H.; Dhakal, T.P. Performance Enhancement of Inverted Perovskite Solar Cells through Lithium-Ion Diffusion from the Nickel Oxide Hole Transport Layer to the Perovskite Absorber. Energy Adv. 2025. [Google Scholar] [CrossRef]
- Hu, T.; Wang, Y.; Liu, K.; Liu, J.; Zhang, H.; Khan, Q.U.; Dai, S.; Qian, W.; Liu, R.; Wang, Y.; et al. Understanding the Decoupled Effects of Cations and Anions Doping for High-Performance Perovskite Solar Cells. Nanomicro Lett. 2025, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hu, Z.; Su, J.; Gong, Z.; Guo, X.; Chen, X.; Yang, Y.; Lin, Z.; Ding, L.; Hao, Y.; et al. Inhibiting Ion Migration and Stabilizing Crystal-Phase in Halide Perovskite via Directly Incorporated Fluoride Anion. Angew. Chem. 2025, 137, e202413550. [Google Scholar] [CrossRef]
- Liang, Y.; Li, F.; Cui, X.; Stampfl, C.; Ringer, S.P.; Yang, X.; Huang, J.; Zheng, R. Multiple B-Site Doping Suppresses Ion Migration in Halide Perovskites. Sci. Adv. 2025, 11, eads7054. [Google Scholar] [CrossRef]
- Pering, S.R.; Deng, W.; Troughton, J.R.; Kubiak, P.S.; Ghosh, D.; Niemann, R.G.; Brivio, F.; Jeffrey, F.E.; Walker, A.B.; Islam, M.S.; et al. Azetidinium Lead Iodide for Perovskite Solar Cells. J. Mater. Chem. A Mater. 2017, 5, 20658–20665. [Google Scholar] [CrossRef]
- Tan, S.; Yavuz, I.; De Marco, N.; Huang, T.; Lee, S.-J.; Choi, C.S.; Wang, M.; Nuryyeva, S.; Wang, R.; Zhao, Y.; et al. Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906995. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Li, R.; Zhuang, X.; Wang, C.; Shang, X.; He, D.; Chen, J.; Chen, C. Suppressing Ion Migration by Synergistic Engineering of Anion and Cation toward High-Performance Inverted Perovskite Solar Cells and Modules. Adv. Mater. 2024, 36, 2313860. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Z.; Lv, S.; Shui, Y.; Zhu, W.; Zhang, Z.; Yang, W.; Zhao, J.; Gu, H.; Xia, J.; et al. A Nd@C82–Polymer Interface for Efficient and Stable Perovskite Solar Cells. Nature 2025, 642, 78–84. [Google Scholar] [CrossRef]
- Li, W.; Bao, X.; Zhu, A.; Gu, H.; Mao, Y.; Wang, B.; Wang, G.; Guo, J.; Li, Y.; Xing, G. Internal Encapsulation Enables Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2025, 35, 2414004. [Google Scholar] [CrossRef]
- Das, C.; Kot, M.; Hellmann, T.; Wittich, C.; Mankel, E.; Zimmermann, I.; Schmeisser, D.; Khaja Nazeeruddin, M.; Jaegermann, W. Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells. Cell Rep. Phys. Sci. 2020, 1, 100112. [Google Scholar] [CrossRef]
- Rajbhandari, P.P.; Dhakal, T.P.; Phys Lett, A.; Dhakal, T.P. Low Temperature ALD Growth Optimization of ZnO, TiO2, and Al2O3 to Be Used as a Buffer Layer in Perovskite Solar Cells. J. Vac. Sci. Technol. A 2020, 38, 32406. [Google Scholar] [CrossRef]
- Artuk, K.; Turkay, D.; Mensi, M.D.; Steele, J.A.; Jacobs, D.A.; Othman, M.; Yu Chin, X.; Moon, S.J.; Tiwari, A.N.; Hessler-Wyser, A.; et al. A Universal Perovskite/C60 Interface Modification via Atomic Layer Deposited Aluminum Oxide for Perovskite Solar Cells and Perovskite–Silicon Tandems. Adv. Mater. 2024, 36, 2311745. [Google Scholar] [CrossRef]
- Chen, P.; Xiao, Y.; Hu, J.; Li, S.; Luo, D.; Su, R.; Caprioglio, P.; Kaienburg, P.; Jia, X.; Chen, N.; et al. Multifunctional Ytterbium Oxide Buffer for Perovskite Solar Cells. Nature 2024, 625, 516–522. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S. Il Controlled Growth of Perovskite Layers with Volatile Alkylammonium Chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Qin, M.; Ren, Z.; Liu, K.; Huang, J.; Shen, D.; Wu, Z.; Zhang, Y.; Hao, J.; et al. Multifunctional Crosslinking-Enabled Strain-Regulating Crystallization for Stable, Efficient α-FAPbI3-Based Perovskite Solar Cells. Adv. Mater. 2021, 33, 2008487. [Google Scholar] [CrossRef]
- Sahayaraj, S.; Starowicz, Z.; Ziółek, M.; Socha, R.; Major, Ł.; Góral, A.; Gawlińska-Nęcek, K.; Palewicz, M.; Sikora, A.; Piasecki, T.; et al. Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells. Materials 2023, 16, 5352. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Shi, T.; Yan, Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xu, Y.; Wang, M.; Zhu, G.; Jin, Z.; Lei, Y.; Xu, Y.; Wang, M.; Jin, Z.; Zhu, G. Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small 2021, 17, 2005495. [Google Scholar] [CrossRef]
- DeQuilettes, D.W.; Vorpahl, S.M.; Stranks, S.D.; Nagaoka, H.; Eperon, G.E.; Ziffer, M.E.; Snaith, H.J.; Ginger, D.S. Impact of Microstructure on Local Carrier Lifetime in Perovskite Solar Cells. Science 2015, 348, 683–686. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef]
- Wu, B.; Nguyen, H.T.; Ku, Z.; Han, G.; Giovanni, D.; Mathews, N.; Fan, H.J.; Sum, T.C. Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Adv. Energy Mater. 2016, 6, 1600551. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, J.; Wang, X.; Liu, Y.; Cai, Q.; Tan, L.; Chen, Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2023, 35, 2302552. [Google Scholar] [CrossRef]
- Sun, Q.; Fassl, P.; Becker-Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P.E.; Snaith, H.J.; Vaynzof, Y.; Sun, Q.; et al. Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Adv. Energy Mater. 2017, 7, 1700977. [Google Scholar] [CrossRef]
- Tian, F.; Feng, W.; Xing, B.; He, X.; Saidi, W.A.; Zhang, L. Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion. Adv. Energy Sustain. Res. 2021, 2, 2100087. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.; Xie, D.; Tian, Y. Mechanisms of Oxygen Passivation on Surface Defects in MAPbI3 Revealed by First-Principles Study. J. Phys. Chem. C 2020, 124, 3731–3737. [Google Scholar] [CrossRef]
- Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Saiful Islam, M.; Haque, S.A. Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of Perovskite Solar Cells. Nat. Commun. 2017, 8, 15218. [Google Scholar] [CrossRef]
- Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S.A. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed. Engl. 2015, 54, 8208–8212. [Google Scholar] [CrossRef]
- Chen, T.; Xie, J.; Wen, B.; Yin, Q.; Lin, R.; Zhu, S.; Gao, P. Inhibition of Defect-Induced α-to-δ Phase Transition for Efficient and Stable Formamidinium Perovskite Solar Cells. Nat. Commun. 2023, 14, 6125. [Google Scholar] [CrossRef]
- Park, B.W.; Kedem, N.; Kulbak, M.; Lee, D.Y.; Yang, W.S.; Jeon, N.J.; Seo, J.; Kim, G.; Kim, K.J.; Shin, T.J.; et al. Understanding How Excess Lead Iodide Precursor Improves Halide Perovskite Solar Cell Performance. Nat. Commun. 2018, 9, 3301. [Google Scholar] [CrossRef]
- Holovský, J.; Peter Amalathas, A.; Landová, L.; Dzurňák, B.; Conrad, B.; Ledinský, M.; Hájková, Z.; Pop-Georgievski, O.; Svoboda, J.; Yang, T.C.J.; et al. Lead Halide Residue as a Source of Light-Induced Reversible Defects in Hybrid Perovskite Layers and Solar Cells. ACS Energy Lett. 2019, 4, 3011–3017. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Qin, C.; Klotz, D.; Leyden, M.R.; Wang, P.; Auffray, M.; Fujihara, T.; Matsushima, T.; Lee, J.-W.; Lee, S.-J.; et al. Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells. Adv. Mater. 2020, 32, 1905035. [Google Scholar] [CrossRef]
- Son, D.Y.; Lee, J.W.; Choi, Y.J.; Jang, I.H.; Lee, S.; Yoo, P.J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; et al. Self-Formed Grain Boundary Healing Layer for Highly Efficient CH3NH3PbI3 Perovskite Solar Cells. Nat. Energy 2016, 1, 16081. [Google Scholar] [CrossRef]
- Zhao, W.; Yao, Z.; Yu, F.; Yang, D.; Liu, S.F. Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells. Adv. Sci. 2017, 5, 1700131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yavuz, I.; Wang, M.; Weber, M.H.; Xu, M.; Lee, J.H.; Tan, S.; Huang, T.; Meng, D.; Wang, R.; et al. Suppressing Ion Migration in Metal Halide Perovskite via Interstitial Doping with a Trace Amount of Multivalent Cations. Nat. Mater. 2022, 21, 1396–1402. [Google Scholar] [CrossRef]
- Wang, J.; Uddin, M.A.; Chen, B.; Ying, X.; Ni, Z.; Zhou, Y.; Li, M.; Wang, M.; Yu, Z.; Huang, J. Enhancing Photostability of Sn-Pb Perovskite Solar Cells by an Alkylammonium Pseudo-Halogen Additive. Adv. Energy Mater. 2023, 13, 2204115. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Lu, M.; Shi, Z.; Yu, W.W.; Hu, J.; Bai, X.; Zhang, Y. Ionic Additive Engineering for Stable Planar Perovskite Solar Cells with Efficiency > 22%. Chem. Eng. J. 2021, 426, 130841. [Google Scholar] [CrossRef]
- Ding, B.; Ding, Y.; Peng, J.; Romano-deGea, J.; Frederiksen, L.E.K.; Kanda, H.; Syzgantseva, O.A.; Syzgantseva, M.A.; Audinot, J.N.; Bour, J.; et al. Dopant-Additive Synergism Enhances Perovskite Solar Modules. Nature 2024, 628, 299–305. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, K.; Han, Y.; Xia, H.; Ren, Z.; Li, D.; Zhu, T.; Cheng, L.; Wang, Z.; Zhu, C.; et al. Highly Stable Perovskite Solar Cells with 0.30 Voltage Deficit Enabled by a Multi-Functional Asynchronous Cross-Linking. Nat. Commun. 2025, 16, 190. [Google Scholar] [CrossRef]
- Liu, L.Y.; Tay, D.J.J.; Furuhashi, T.; Xue, K.; Li, Y.; Xiao, X.; Abuzeid, H.R.; Paul Erinjeri, J.; Sum, T.C.; Mathews, N. Enhancing Perovskite Solar Cell Stability and Performance via Bulk Passivation with Sulfonium-Based Passivators. ChemSusChem 2025, 18, e202500931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, W.; Chen, X.; Chen, Y.; Li, X.; Wang, M.; Zhou, Y.; Yan, H.; Zheng, Z.; Zhang, Y. Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2201105. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Huang, X.; Feng, Q.; Liu, M.; Chen, M.; An, Y.; Jiang, W.; Lin, F.R.; Fu, Q.; et al. Bilayer Interface Engineering through 2D/3D Perovskite and Surface Dipole for Inverted Perovskite Solar Modules. eScience 2024, 4, 100308. [Google Scholar] [CrossRef]
- Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A.S.; Liu, J.; Harrison, G.T.; Nugraha, M.I.; Eswaran, M.K.; Babics, M.; et al. Damp Heat-Stable Perovskite Solar Cells with Tailored-Dimensionality 2D/3D Heterojunctions. Science 2022, 376, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, A.A.; Szostak, R.; Drigo, N.; Queloz, V.I.E.; Marchezi, P.E.; Germino, J.C.; Tolentino, H.C.N.; Nazeeruddin, M.K.; Nogueira, A.F.; Grancini, G. In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Lett. 2020, 20, 3992–3998. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Chen, H.; Spanopoulos, I.; Bati, A.S.R.; Gilley, I.W.; Chen, J.; Maxwell, A.; Vishal, B.; Reynolds, R.P.; et al. Two-Dimensional Perovskitoids Enhance Stability in Perovskite Solar Cells. Nature 2024, 633, 359–364. [Google Scholar] [CrossRef]
- Lou, Q.; Lou, G.; Guo, H.; Sun, T.; Wang, C.; Chai, G.; Chen, X.; Yang, G.; Guo, Y.; Zhou, H. Enhanced Efficiency and Stability of N-i-p Perovskite Solar Cells by Incorporation of Fluorinated Graphene in the Spiro-OMeTAD Hole Transport Layer. Adv. Energy Mater. 2022, 12, 2201344. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Liu, T.; Zeng, Q.; Cao, D.; Pan, H.; Xing, G. Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 3284–3292. [Google Scholar] [CrossRef]
- Reza, K.M.; Gurung, A.; Bahrami, B.; Mabrouk, S.; Elbohy, H.; Pathak, R.; Chen, K.; Chowdhury, A.H.; Rahman, M.T.; Letourneau, S.; et al. Tailored PEDOT:PSS Hole Transport Layer for Higher Performance in Perovskite Solar Cells: Enhancement of Electrical and Optical Properties with Improved Morphology. J. Energy Chem. 2020, 44, 41–50. [Google Scholar] [CrossRef]
- De Rossi, F.; Renno, G.; Taheri, B.; Yaghoobi Nia, N.; Ilieva, V.; Fin, A.; Di Carlo, A.; Bonomo, M.; Barolo, C.; Brunetti, F. Modified P3HT Materials as Hole Transport Layers for Flexible Perovskite Solar Cells. J. Power Sources 2021, 494, 229735. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.; Zhang, Y.; Chen, M.; Liu, T.; Xiao, C.; Gao, D.; Patel, J.B.; Kuciauskas, D.; Magomedov, A.; et al. Co-Deposition of Hole-Selective Contact and Absorber for Improving the Processability of Perovskite Solar Cells. Nat. Energy 2023, 8, 462–472. [Google Scholar] [CrossRef]
- Arjun, V.; Muthukumaran, K.P.; Ramachandran, K.; Nithya, A.; Karuppuchamy, S. Fabrication of Efficient and Stable Planar Perovskite Solar Cell Using Copper Oxide as Hole Transport Material. J. Alloys Compd. 2022, 923, 166285. [Google Scholar] [CrossRef]
- Liang, J.W.; Firdaus, Y.; Azmi, R.; Faber, H.; Kaltsas, D.; Kang, C.H.; Nugraha, M.I.; Yengel, E.; Ng, T.K.; De Wolf, S.; et al. Cl2-Doped CuSCN Hole Transport Layer for Organic and Perovskite Solar Cells with Improved Stability. ACS Energy Lett. 2022, 7, 3139–3148. [Google Scholar] [CrossRef]
- Fahsyar, P.N.A.; Ludin, N.A.; Ramli, N.F.; Sepeai, S.; Suait, M.S.; Ibrahim, M.A.; Teridi, M.A.; Sopian, K. Correlation of Simulation and Experiment for Perovskite Solar Cells with MoS2 Hybrid-HTL Structure. Appl. Phys. A Mater. Sci. Process 2021, 127, 383. [Google Scholar] [CrossRef]
- Said, A.A.; Aydin, E.; Ugur, E.; Xu, Z.; Deger, C.; Vishal, B.; Vlk, A.; Dally, P.; Yildirim, B.K.; Azmi, R.; et al. Sublimed C60 for Efficient and Repeatable Perovskite-Based Solar Cells. Nat. Commun. 2024, 15, 708. [Google Scholar] [CrossRef]
- Zhong, Y.; Hufnagel, M.; Thelakkat, M.; Li, C.; Huettner, S.; Zhong, Y.; Li, C.; Huettner, S.; Hufnagel, M.; Thelakkat, M. Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 1908920. [Google Scholar] [CrossRef]
- Lee, M.; Kim, D.; Lee, Y.K.; Koo, H.; Lee, K.T.; Chung, I. Indene-C60Bisadduct Electron-Transporting Material with the High LUMO Level Enhances Open-Circuit Voltage and Efficiency of Tin-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 5581–5588. [Google Scholar] [CrossRef]
- Ran, X.; Ali, M.A.; Hu, Z.; Li, P.; Xia, Y.; Zhang, H.; Yang, L.; Chen, Y. State-of-the-Art Techniques on Asymmetrical Perylene Diimide Derivatives: Efficient Electron-Transport Materials for Perovskite Solar Cells. J. Phys. Chem. C 2023, 127, 5114–5124. [Google Scholar] [CrossRef]
- Jameel, M.A.; Yang, T.C.J.; Wilson, G.J.; Evans, R.A.; Gupta, A.; Langford, S.J. Naphthalene Diimide-Based Electron Transport Materials for Perovskite Solar Cells. J. Mater. Chem. A Mater. 2021, 9, 27170–27192. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Zhang, H.; El Jery, A.; Aldrdery, M. A Critical Review on Advancement and Challenges in Using TiO2 as Electron Transport Layer for Perovskite Solar Cell. Mater. Today Sustain. 2024, 27, 100857. [Google Scholar] [CrossRef]
- Altinkaya, C.; Aydin, E.; Ugur, E.; Isikgor, F.H.; Subbiah, A.S.; De Bastiani, M.; Liu, J.; Babayigit, A.; Allen, T.G.; Laquai, F.; et al. Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Adv. Mater. 2021, 33, 2005504. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, G.; Huang, W.; Wang, B.; Ke, W.; Leigh Logsdon, J.; Wang, H.; Wang, Z.; Zhu, W.; Yu, J.; et al. Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1900265. [Google Scholar] [CrossRef]
- Gu, B.; Du, Y.; Fang, S.; Chen, X.; Li, X.; Xu, Q.; Lu, H. Fabrication of UV-Stable Perovskite Solar Cells with Compact Fe2O3 Electron Transport Layer by FeCl3 Solution and Fe3O4 Nanoparticles. Nanomaterials 2022, 12, 4415. [Google Scholar] [CrossRef]
- Mahjabin, S.; Haque, M.M.; Bashar, M.S.; Shahiduzzaman, M.; Hossain, M.I.; Gantumur, M.; Jamal, M.S.; Abdur, R.; Shakel, M.S.; Muhammad, G.; et al. Boosting Perovskite Solar Cell Stability through a Sputtered Mo-Doped Tungsten Oxide (WOx) Electron Transport Layer. Energy Fuels 2023, 37, 19860–19869. [Google Scholar] [CrossRef]
- Al-Mousoi, A.K.; Mohammed, M.K.A.; Pandey, R.; Madan, J.; Dastan, D.; Ravi, G.; Sakthivel, P.; Anandha Babu, G. Simulation and Analysis of Lead-Free Perovskite Solar Cells Incorporating Cerium Oxide as Electron Transporting Layer. RSC Adv. 2022, 12, 32365–32373. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M.E.; Kirkpatrik, J.; Ball, J.M.; Docampo, P.; Mcpherson, I.; et al. Lithium Salts as “Redox Active” p-Type Dopants for Organic Semiconductors and Their Impact in Solid-State Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2013, 15, 2572. [Google Scholar] [CrossRef]
- Tan, B.; Raga, S.R.; Chesman, A.S.R.; Fürer, S.O.; Zheng, F.; McMeekin, D.P.; Jiang, L.; Mao, W.; Lin, X.; Wen, X.; et al. LiTFSI-Free Spiro-OMeTAD-Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. Adv. Energy Mater. 2019, 9, 1901519. [Google Scholar] [CrossRef]
- Kim, S.G.; Le, T.H.; de Monfreid, T.; Goubard, F.; Bui, T.T.; Park, N.G. Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells. Adv. Mater. 2021, 33, 2007431. [Google Scholar] [CrossRef]
- Bastos, J.P.; Paetzold, U.W.; Gehlhaar, R.; Qiu, W.; Cheyns, D.; Surana, S.; Spampinato, V.; Aernouts, T.; Poortmans, J. Light-Induced Degradation of Perovskite Solar Cells: The Influence of 4-Tert-Butyl Pyridine and Gold. Adv. Energy Mater. 2018, 8, 1800554. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons Learned from Spiro-OMeTAD and PTAA in Perovskite Solar Cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Neophytou, M.; Griffiths, J.; Fraser, J.; Kirkus, M.; Chen, H.; Nielsen, C.B.; McCulloch, I. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells. J. Mater. Chem. C Mater. 2017, 5, 4940–4945. [Google Scholar] [CrossRef]
- Labban, A.E.; Chen, H.; Kirkus, M.; Barbe, J.; Del Gobbo, S.; Neophytou, M.; McCulloch, I.; Eid, J. Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement. Adv. Energy Mater. 2016, 6, 1502101. [Google Scholar] [CrossRef]
- Boyd, C.C.; Shallcross, R.C.; Moot, T.; Kerner, R.; Bertoluzzi, L.; Onno, A.; Kavadiya, S.; Chosy, C.; Wolf, E.J.; Werner, J.; et al. Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule 2020, 4, 1759–1775. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, M.; Liu, X.; Cheung, S.H.; Chandran, H.T.; Li, H.W.; Xu, X.; Xie, Y.M.; So, S.K.; Yip, H.L.; et al. Impact of Surface Dipole in NiOx on the Crystallization and Photovoltaic Performance of Organometal Halide Perovskite Solar Cells. Nano Energy 2019, 61, 496–504. [Google Scholar] [CrossRef]
- Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16995–17000. [Google Scholar] [CrossRef]
- Yu, H.; Yeom, H.-I.; Woo Lee, J.; Lee, K.; Hwang, D.; Yun, J.; Ryu, J.; Lee, J.; Bae, S.; Keun Kim, S.; et al. Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and Their Application in Planar Perovskite Photovoltaics. Adv. Mater. 2018, 30, 1704825. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Dong, W.; Cai, H.; Zu, C.; Yue, W.; Li, H.; Zhao, J.; Huang, F.; Cheng, Y.B.; Zhong, J. Electrochemical Reduction and Ion Injection of Annealing-Free SnO2 for High Performance Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300491. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, S.; Chu, Y.; Ye, T.; Qiu, C.; Qiu, Z.; Wang, X.; Wang, Y.; Su, Y.; et al. Oxygen Vacancy Management for High-Temperature Mesoporous SnO2 Electron Transport Layers in Printable Perovskite Solar Cells. Angew. Chem. 2022, 134, e202202012. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Frolova, L.A.; Griffin, M.P.; Gearba, I.R.; Dolocan, A.; Vanden Bout, D.A.; Tsarev, S.; Katz, E.A.; Shestakov, A.F.; Stevenson, K.J.; et al. Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700476. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, B.; Shi, L.; Zhou, S.; Xu, J.; Liu, Z.; Yun, J.S.; Choi, E.; Zhang, M.; Lv, Y.; et al. Perovskite Solar Cells Based on Spiro-OMeTAD Stabilized with an Alkylthiol Additive. Nat. Photonics 2022, 17, 96–105. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Yang, Y.; Liu, X.; Guo, Q.; Song, Z.; Li, G.; Lan, Z.; Huang, M. High Performance and Stable Perovskite Solar Cells Using Vanadic Oxide as a Dopant for Spiro-OMeTAD. J. Mater. Chem. A Mater. 2019, 7, 13256–13264. [Google Scholar] [CrossRef]
- Ma, S.; Pang, S.; Dong, H.; Xie, X.; Liu, G.; Dong, P.; Liu, D.; Zhu, W.; Xi, H.; Chen, D.; et al. Stability Improvement of Perovskite Solar Cells by the Moisture-Resistant PMMA:Spiro-OMeTAD Hole Transport Layer. Polymers 2022, 14, 343. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3-V Voltage Loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, T.; Chen, W.; Wu, Y.; Guo, X.; Shen, Y.; Ding, C.; Chen, X.; Chen, H.; Ding, J.; et al. Iodonium Initiators: Paving the Air-Free Oxidation of Spiro-OMeTAD for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202316183. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Fu, Q.; Sun, L.; Liu, Y.; Sun, Z.; Xue, S.; Liu, Y.; Liang, M. Conjugation Engineering of Spiro-Based Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 2667–2676. [Google Scholar] [CrossRef]
- Liu, X.; Wang, K.; Li, Y.; You, S.; Liu, T.; Lv, Y.; Li, Y.; Wang, Y.; He, H.; Li, Y.; et al. Mesoscale Ordering 3D Mosaic Self-Assembly of Dopant-Free Hole Transport Material for Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 2446–2455. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.B. Highly Stable Perovskite Solar Cells Based on Perovskite/NiO-Graphene Composites and NiO Interface with 25.9 MA/Cm2 Photocurrent Density and 20.8% Efficiency. Nano Energy 2021, 79, 105452. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Fixed Charge Passivation in Perovskite Solar Cells. Nat. Energy 2024, 9, 16–17. [Google Scholar] [CrossRef]
- Jiang, W.; Qu, G.; Huang, X.; Chen, X.; Chi, L.; Wang, T.; Wong, C.T.; Lin, F.R.; Yang, C.; Jiang, Q.; et al. Toughened Self-Assembled Monolayers for Durable Perovskite Solar Cells. Nature 2025, 646, 95–101. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N.; Ding, J. Enhanced UV-Light Stability of Organometal Halide Perovskite Solar Cells with Interface Modification and a UV Absorption Layer. J. Mater. Chem. C Mater. 2017, 5, 8682–8687. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Jin, J.; Chen, X.; Cheng, Y.; Zheng, Y.; Liu, D.; Xu, L.; Song, H.; Dai, Q. Long-Lasting Nanophosphors Applied to UV-Resistant and Energy Storage Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700758. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, S.; Zhu, X.; Li, S.; Zheng, Z.; Zhao, K.; Ji, L.; Li, R.; Liu, Y.; Liu, C.; et al. Inverted Perovskite Solar Cells with over 2,000 h Operational Stability at 85 °C Using Fixed Charge Passivation. Nat. Energy 2024, 9, 37–46. [Google Scholar] [CrossRef]
- Chen, T.; Xie, J.; Gao, P. Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies. Adv. Energy Sustain. Res. 2022, 3, 2100218. [Google Scholar] [CrossRef]
- Su, H.; Xu, Z.; He, X.; Yao, Y.; Zheng, X.; She, Y.; Zhu, Y.; Zhang, J.; Liu, S. Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25%. Adv. Mater. 2024, 36, 2306724. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, H.; Wang, M.; Lan, Z.; Cui, P.; Du, S.; Yang, Y.; Yan, L.; Zhang, Q.; Qu, S.; et al. Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3%. Adv. Mater. 2024, 36, 2310710. [Google Scholar] [CrossRef]
- Qiu, J.; Mei, X.; Zhang, M.; Wang, G.; Zou, S.; Wen, L.; Huang, J.; Hua, Y.; Zhang, X. Dipolar Chemical Bridge Induced CsPbI3 Perovskite Solar Cells with 21.86% Efficiency. Angew. Chem. Int. Ed. 2024, 63, e202401751. [Google Scholar] [CrossRef]
- Koo, D.; Choi, Y.; Kim, U.; Kim, J.; Seo, J.; Son, E.; Min, H.; Kang, J.; Park, H. Mesoporous Structured MoS2 as an Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Nat. Nanotechnol. 2024, 20, 75–82. [Google Scholar] [CrossRef]
- Zhao, M.; Gu, W.-M.; Jiang, K.-J.; Jiao, X.; Gong, K.; Li, F.; Zhou, X.; Song, Y. 2,2′-Bipyridyl-4,4′-Dicarboxylic Acid Modified Buried Interface of High-Performance Perovskite Solar Cells. Angew. Chem. 2025, 137, e202418176. [Google Scholar] [CrossRef]
- Panyathip, R.; Sucharitakul, S.; Hongsith, K.; Bumrungsan, W.; Yarangsi, V.; Phaduangdhitidhada, S.; Chanlek, N.; Choopun, S. Surface Modification of SnO2 Electron Transporting Layer by Graphene Quantum Dots for Performance and Stability Improvement of Perovskite Solar Cells. Ceram. Int. 2024, 50, 34840–34848. [Google Scholar] [CrossRef]
- Príncipe, J.; Duarte, V.C.M.; Mendes, A.; Andrade, L. Influence of the Transparent Conductive Oxide Type on the Performance of Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 12442–12451. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.K.; Xue, J.; Yang, Y. A Review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Domanski, K.; Correa-Baena, J.P.; Mine, N.; Nazeeruddin, M.K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS Nano 2016, 10, 6306–6314. [Google Scholar] [CrossRef] [PubMed]
- Shlenskaya, N.N.; Belich, N.A.; Grätzel, M.; Goodilin, E.A.; Tarasov, A.B. Light-Induced Reactivity of Gold and Hybrid Perovskite as a New Possible Degradation Mechanism in Perovskite Solar Cells. J. Mater. Chem. A Mater. 2018, 6, 1780–1786. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Bush, K.A.; Prasanna, R.; Leijtens, T.; McGehee, M.D. Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1772–1778. [Google Scholar] [CrossRef]
- Kato, Y.; Ono, L.K.; Lee, M.V.; Wang, S.; Raga, S.R.; Qi, Y. Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Adv. Mater. Interfaces 2015, 2, 1500195. [Google Scholar] [CrossRef]
- Li, J.; Dong, Q.; Li, N.; Wang, L. Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1602922. [Google Scholar] [CrossRef]
- Svanström, S.; García-Fernández, A.; Jacobsson, T.J.; Bidermane, I.; Leitner, T.; Sloboda, T.; Man, G.J.; Boschloo, G.; Johansson, E.M.J.; Rensmo, H.; et al. The Complex Degradation Mechanism of Copper Electrodes on Lead Halide Perovskites. ACS Mater. Au 2022, 2, 301–312. [Google Scholar] [CrossRef]
- Sirotinskaya, S.; Schmechel, R.; Benson, N. Influence of the Cathode Microstructure on the Stability of Inverted Planar Perovskite Solar Cells. RSC Adv. 2020, 10, 23653–23661. [Google Scholar] [CrossRef]
- Wu, S.; Chen, R.; Zhang, S.; Babu, B.H.; Yue, Y.; Zhu, H.; Yang, Z.; Chen, C.; Chen, W.; Huang, Y.; et al. A Chemically Inert Bismuth Interlayer Enhances Long-Term Stability of Inverted Perovskite Solar Cells. Nat. Commun. 2019, 10, 1161. [Google Scholar] [CrossRef]
- Lin, X.; Su, H.; He, S.; Song, Y.; Wang, Y.; Qin, Z.; Wu, Y.; Yang, X.; Han, Q.; Fang, J.; et al. In Situ Growth of Graphene on Both Sides of a Cu–Ni Alloy Electrode for Perovskite Solar Cells with Improved Stability. Nat. Energy 2022, 7, 520–527. [Google Scholar] [CrossRef]
- Li, X.; Fu, S.; Zhang, W.; Ke, S.; Song, W.; Fang, J. Chemical Anti-Corrosion Strategy for Stable Inverted Perovskite Solar Cells. Sci. Adv. 2020, 6, eabd1580. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Li, X.; Zhang, W.; Yang, H.; Guo, X.; Lu, C.; Yuan, H.; Ou-Yang, W.; Fang, J. Ag Electrode Anticorrosion in Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2307310. [Google Scholar] [CrossRef]
- Liu, N.; Xiong, J.; He, Z.; Yuan, C.; Dai, J.; Zhang, Y.; Zhou, C.; Zhang, X.; Li, L.; Wang, D.; et al. Multifunctional Anti-Corrosive Interface Modification for Inverted Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300025. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Zhu, R.; Chen, X.; Wang, T.; Pu, X.; Chen, H.; Cao, Q.; Li, X. Enhanced Corrosion Resistance of Ag Electrode Through Ionized 2-Mercaptobenzothiazole in Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2025, 35, 2413245. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Q.; Wang, T.; Yang, B.; Pu, X.; Zhang, Y.; Chen, H.; Tojiboyev, I.; Li, Y.; Etgar, L.; et al. Inhibiting Metal-Inward Diffusion-Induced Degradation through Strong Chemical Coordination toward Stable and Efficient Inverted Perovskite Solar Cells. Energy Environ. Sci. 2022, 15, 2154–2163. [Google Scholar] [CrossRef]
- Gong, C.; Li, H.; Wang, H.; Zhang, C.; Zhuang, Q.; Wang, A.; Xu, Z.; Cai, W.; Li, R.; Li, X.; et al. Silver Coordination-Induced n-Doping of PCBM for Stable and Efficient Inverted Perovskite Solar Cells. Nat. Commun. 2024, 15, 4922. [Google Scholar] [CrossRef]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T. Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. J. Phys. Chem. Lett. 2014, 5, 3241–3246. [Google Scholar] [CrossRef]
- Mei, A.; Sheng, Y.; Ming, Y.; Hu, Y.; Rong, Y.; Zhang, W.; Luo, S.; Na, G.; Tian, C.; Hou, X.; et al. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule 2020, 4, 2646–2660. [Google Scholar] [CrossRef]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef]
- Zouhair, S.; Clegg, C.; Valitova, I.; March, S.; Jailani, J.M.; Pecunia, V. Carbon Electrodes for Perovskite Photovoltaics: Interfacial Properties, Meta-Analysis, and Prospects. Sol. RRL 2024, 8, 2300929. [Google Scholar] [CrossRef]
- Don, M.F.; Ekanayake, P.; Jennings, J.R.; Nakajima, H.; Kumar, D.U.; Lim, C.M. Influence of Metal Salts (Al, Ca, and Mg) on the Work Function and Hole Extraction at Carbon Counter Electrodes in Perovskite Solar Cells. Heliyon 2023, 9, e17748. [Google Scholar] [CrossRef]
- Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant Ab, J.R.; Haque, S.A. Light and Oxygen Induced Degradation Limits the Operational Stability of Methylammonium Lead Triiodide Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 1655. [Google Scholar] [CrossRef]
- Akman, E.; Akin, S.; Akman, E.; Akin, S. Poly(N,N′-Bis-4-Butylphenyl-N,N′-Bisphenyl)Benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture. Adv. Mater. 2021, 33, 2006087. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Guo, X.; Wang, L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J. Mater. Chem. A Mater. 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Leguy, A.M.A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M.I.; Weber, O.J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M.T.; Bein, T.; Nelson, J.; et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27, 3397–3407. [Google Scholar] [CrossRef]
- Song, Z.; Abate, A.; Watthage, S.C.; Liyanage, G.K.; Phillips, A.B.; Steiner, U.; Graetzel, M.; Heben, M.J. Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Adv. Energy Mater. 2016, 6, 1600846. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy Environ. Sci. 2017, 10, 516–522. [Google Scholar] [CrossRef]
- Yun, J.S.; Kim, J.; Young, T.; Patterson, R.J.; Kim, D.; Seidel, J.; Lim, S.; Green, M.A.; Huang, S.; Ho-Baillie, A. Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1705363. [Google Scholar] [CrossRef]
- Buin, A.; Comin, R.; Xu, J.; Ip, A.H.; Sargent, E.H. Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chem. Mater. 2015, 27, 4405–4412. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S. Il Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H.L.W.; Yan, F. Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Irrespective of the Humidity. Nat. Commun. 2016, 7, 11105. [Google Scholar] [CrossRef]
- Tian, C.; Wu, T.; Zhao, Y.; Zhou, X.; Li, B.; Han, X.; Li, K.; Hou, C.; Li, Y.; Wang, H.; et al. Anion-Stabilized Precursor Inks Toward Efficient and Reproducible Air-Processed Perovskite Solar Cells. Adv. Energy Mater. 2024, 14, 2303666. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew. Chem. Int. Ed. 2017, 56, 1190–1212. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, M.; Park, J.S.; Wei, S.H.; Berry, J.J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, D.; Wang, Y.; Zhang, T.; Gu, X.; Zhang, P.; Wu, J.; Chen, Z.D.; Zhao, Y.; Li, S. Theoretical Lifetime Extraction and Experimental Demonstration of Stable Cesium-Containing Tri-Cation Perovskite Solar Cells with High Efficiency. Electrochim. Acta 2018, 265, 98–106. [Google Scholar] [CrossRef]
- Azmi, R.; Zhumagali, S.; Bristow, H.; Zhang, S.; Yazmaciyan, A.; Pininti, A.R.; Utomo, D.S.; Subbiah, A.S.; De Wolf, S. Moisture-Resilient Perovskite Solar Cells for Enhanced Stability. Adv. Mater. 2024, 36, 2211317. [Google Scholar] [CrossRef]
- Bi, D.; Gao, P.; Scopelliti, R.; Oveisi, E.; Luo, J.; Grätzel, M.; Hagfeldt, A.; Nazeeruddin, M.K.; Bi, D.; Hagfeldt, A.; et al. High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3. Adv. Mater. 2016, 28, 2910–2915. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Cai, C.; Hu, X.; Huang, Z.; Duan, X.; Meng, X.; Yuan, Z.; Tan, L.; Chen, Y. High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via Fluorinated Perylenediimide. Adv. Energy Mater. 2019, 9, 1900198. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, L.; Sun, T.; Shi, H.; Xu, Y.; Huang, J.; Li, X.; Shen, Y.; Wang, M. Moisture-Resistant Perovskite Solar Cells: The Role of 1,1′-Methylenebispyridinium Dichloride in Enhancing Stability and Performance. J. Mater. Chem. A Mater. 2025, 13, 4167–4175. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, X.; Xu, S.; Liu, G.; Chen, S.; Zhang, X.; Chen, T.; Pan, X. The Multiple Effects of Polyaniline Additive to Improve the Efficiency and Stability of Perovskite Solar Cells. J. Mater. Chem. C Mater. 2019, 7, 4441–4448. [Google Scholar] [CrossRef]
- Choi, Y.W.; Jeon, Y.S.; Lee, D.N.; Park, N.G. Microencapsulation of Grain Boundaries for Moisture-Stable Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 3754–3765. [Google Scholar] [CrossRef]
- Sun, R.; Chen, S.; He, Q.; Yang, P.; Gao, X.; Wu, M.; Wang, J.; Zhong, C.; Zhao, X.; Li, M.; et al. A Stepwise Melting-Polymerizing Molecule for Hydrophobic Grain-Scale Encapsulated Perovskite Solar Cell. Adv. Mater. 2025, 37, 2410395. [Google Scholar] [CrossRef]
- Li, Z.; Jia, C.; Wan, Z.; Cao, J.; Shi, J.; Xue, J.; Liu, X.; Wu, H.; Xiao, C.; Li, C.; et al. Boosting Mechanical Durability under High Humidity by Bioinspired Multisite Polymer for High-Efficiency Flexible Perovskite Solar Cells. Nat. Commun. 2025, 16, 1771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient Ambient-Air-Stable Solar Cells with 2D-3D Heterostructured Butylammonium-Caesium-Formamidinium Lead Halide Perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Liu, T.; Guo, J.; Lu, D.; Xu, Z.; Fu, Q.; Zheng, N.; Xie, Z.; Wan, X.; Zhang, X.; Liu, Y.; et al. Spacer Engineering Using Aromatic Formamidinium in 2D/3D Hybrid Perovskites for Highly Efficient Solar Cells. ACS Nano 2021, 15, 7811–7820. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liu, G.; Su, Y.; Sheng, W.; Gong, L.; Zhang, J.; Tan, L.; Chen, Y. Diammonium Molecular Configuration-Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202114588. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, L.; Liu, T.; Tian, B.; Chu, W.; Sun, X.; Nie, R.; Zhang, W.; Zhang, Z.; Zhao, X.; et al. Engineering Spacer Conjugation for Efficient and Stable 2D/3D Perovskite Solar Cells and Modules. Angew. Chem. 2025, 137, e202413303. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, S.; Li, Y.; Zhang, L.; Shen, N.; Zhang, G.; Du, J.; Fu, N.; Xu, B. Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 2558–2565. [Google Scholar] [CrossRef]
- Liang, C.; Gu, H.; Xia, Y.; Wang, Z.; Liu, X.; Xia, J.; Zuo, S.; Hu, Y.; Gao, X.; Hui, W.; et al. Two-Dimensional Ruddlesden–Popper Layered Perovskite Solar Cells Based on Phase-Pure Thin Films. Nat. Energy 2020, 6, 38–45. [Google Scholar] [CrossRef]
- Suo, J.; Yang, B.; Mosconi, E.; Bogachuk, D.; Doherty, T.A.S.; Frohna, K.; Kubicki, D.J.; Fu, F.; Kim, Y.J.; Er-Raji, O.; et al. Multifunctional Sulfonium-Based Treatment for Perovskite Solar Cells with Less than 1% Efficiency Loss over 4,500-h Operational Stability Tests. Nat. Energy 2024, 9, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Y.; Yang, M.; Han, D.; Yang, L.; Fan, L.; Sui, Y.; Sun, Y.; Liu, X.; Meng, X.; et al. Interface Dipole Induced Field-effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2008052. [Google Scholar] [CrossRef]
- Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D.T.L.; Buonsanti, R. CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angew. Chem. Int. Ed. 2017, 56, 10696–10701. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tan, Y.; Cao, M.; Hu, H.; Wu, L.; Yu, X.; Wang, L.; Sun, B.; Zhang, Q. Fabricating CsPbX3-Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX3/ZrO2 Nanocrystals. ACS Nano 2019, 13, 5366–5374. [Google Scholar] [CrossRef]
- Choi, E.; Lee, J.W.; Anaya, M.; Mirabelli, A.; Shim, H.; Strzalka, J.; Lim, J.; Yun, S.; Dubajic, M.; Lim, J.; et al. Synergetic Effect of Aluminum Oxide and Organic Halide Salts on Two-Dimensional Perovskite Layer Formation and Stability Enhancement of Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2301717. [Google Scholar] [CrossRef]
- Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Appl. Sci. 2020, 10, 914. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Kim, N.K.; Min, Y.H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S.W.; Lee, J.S.; Kim, S.; Ihm, K.; et al. Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells Using In-Situ Synchrotron Radiation Analysis. Sci. Rep. 2017, 7, 4645. [Google Scholar] [CrossRef]
- Dualeh, A.; Gao, P.; Seok, S.I.; Nazeeruddin, M.K.; Grätzel, M. Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mater. 2014, 26, 6160–6164. [Google Scholar] [CrossRef]
- Williams, A.E.; Holliman, P.J.; Carnie, M.J.; Davies, M.L.; Worsley, D.A.; Watson, T.M. Perovskite Processing for Photovoltaics: A Spectro-Thermal Evaluation. J. Mater. Chem. A Mater. 2014, 2, 19338–19346. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Ono, L.K.; Qi, Y. Thermal Degradation of Formamidinium Based Lead Halide Perovskites into Sym-Triazine and Hydrogen Cyanide Observed by Coupled Thermogravimetry-Mass Spectrometry Analysis. J. Mater. Chem. A Mater. 2019, 7, 16912–16919. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Frolova, L.A.; Dremova, N.N.; Zhidkov, I.; Martynenko, V.M.; Tsarev, S.A.; Luchkin, S.Y.; Kurmaev, E.Z.; Aldoshin, S.M.; Stevenson, K.J.; et al. Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions? J. Phys. Chem. Lett. 2020, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ava, T.T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Appl. Sci. 2019, 9, 188. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2014, 517, 476–480. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Li, J.; Liang, X.; Wang, L. Enhancement of Thermal Stability for Perovskite Solar Cells through Cesium Doping. RSC Adv. 2017, 7, 17473–17479. [Google Scholar] [CrossRef]
- Schwenzer, J.A.; Hellmann, T.; Nejand, B.A.; Hu, H.; Abzieher, T.; Schackmar, F.; Hossain, I.M.; Fassl, P.; Mayer, T.; Jaegermann, W.; et al. Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites. ACS Appl. Mater. Interfaces 2021, 13, 15292–15304. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Z.; Li, S.; Zhai, Y.; Wang, X.; Qiao, Z.; Xu, Q.; Meng, K.; Zhu, Z.; Chen, G. Highly Thermostable and Efficient Formamidinium-Based Low-Dimensional Perovskite Solar Cells. Angew. Chem. 2021, 133, 869–877. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, Y.; Fang, Y.; Chen, Z.; Yang, S.; Zheng, X.; Tang, S.; Liu, Y.; Zhao, J.; Huang, J. Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. J. Phys. Chem. Lett. 2018, 9, 654–658. [Google Scholar] [CrossRef]
- Yue, T.; Li, K.; Li, X.; Ahmad, N.; Kang, H.; Cheng, Q.; Zhang, Y.; Yue, Y.; Jing, Y.; Wang, B.; et al. A Binary Solution Strategy Enables High-Efficiency Quasi-2D Perovskite Solar Cells with Excellent Thermal Stability. ACS Nano 2023, 17, 14632–14643. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Simchi, A.; Mo, X.; Fan, Z. High-Quality Organohalide Lead Perovskite Films Fabricated by Layer-by-Layer Alternating Vacuum Deposition for High Efficiency Photovoltaics. Mater. Chem. Front. 2017, 1, 1520–1525. [Google Scholar] [CrossRef]
- Arianita Dewi, H.; Li, J.; Wang, H.; Chaudhary, B.; Mathews, N.; Mhaisalkar, S.; Bruno, A.; Dewi, H.A.; Li, J.; Wang, H.; et al. Excellent Intrinsic Long-Term Thermal Stability of Co-Evaporated MAPbI3 Solar Cells at 85 °C. Adv. Funct. Mater. 2021, 31, 2100557. [Google Scholar] [CrossRef]
- Arivazhagan, V.; Hang, P.; Parvathi, M.M.; Tang, Z.; Khan, A.; Yang, D.; Yu, X. All-Vacuum Deposited and Thermally Stable Perovskite Solar Cells with F4-TCNQ/CuPc Hole Transport Layer. Nanotechnology 2019, 31, 065401. [Google Scholar] [CrossRef]
- Yuan, Q.; Lohmann, K.B.; Oliver, R.D.J.; Ramadan, A.J.; Yan, S.; Ball, J.M.; Christoforo, M.G.; Noel, N.K.; Snaith, H.J.; Herz, L.M.; et al. Thermally Stable Perovskite Solar Cells by All-Vacuum Deposition. ACS Appl. Mater. Interfaces 2023, 15, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.K.; et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Ding, Y.; Ding, B.; Xu, J.; Liu, A.; Yu, J.; Grater, L.; Zhu, H.; Hadke, S.S.; et al. A Thermotropic Liquid Crystal Enables Efficient and Stable Perovskite Solar Modules. Nat. Energy 2024, 9, 316–323. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Wang, K.; Peng, C.; Sun, X.; Zhao, Q.; Gao, K.; Ji, H.; Yan, X.; Wang, X.; et al. An In Situ Polymerization Strategy to Enhance Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2025, 17, 28173–28180. [Google Scholar] [CrossRef]
- Joshi, P.H.; Zhang, L.; Hossain, I.M.; Abbas, H.A.; Kottokkaran, R.; Nehra, S.P.; Dhaka, M.; Noack, M.; Dalal, V.L. The Physics of Photon Induced Degradation of Perovskite Solar Cells. AIP Adv. 2016, 6, 115114. [Google Scholar] [CrossRef]
- Ruan, S.; Surmiak, M.A.; Ruan, Y.; McMeekin, D.P.; Ebendorff-Heidepriem, H.; Cheng, Y.B.; Lu, J.; McNeill, C.R. Light Induced Degradation in Mixed-Halide Perovskites. J. Mater. Chem. C Mater. 2019, 7, 9326–9334. [Google Scholar] [CrossRef]
- Xu, R.P.; Li, Y.Q.; Jin, T.Y.; Liu, Y.Q.; Bao, Q.Y.; O’Carroll, C.; Tang, J.X. In Situ Observation of Light Illumination-Induced Degradation in Organometal Mixed-Halide Perovskite Films. ACS Appl. Mater. Interfaces 2018, 10, 6737–6746. [Google Scholar] [CrossRef]
- Nie, W.; Blancon, J.C.; Neukirch, A.J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M.A.; Sfeir, M.Y.; Katan, C.; Even, J.; et al. Light-Activated Photocurrent Degradation and Self-Healing in Perovskite Solar Cells. Nat. Commun. 2016, 7, 11574. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Anoop, K.M.; Visoly-Fisher, I.; Kolusheva, S.; Galagan, Y.; Di Giacomo, F.; Vukovic, O.; Patil, B.R.; Sherafatipour, G.; Turkovic, V.; et al. Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes. ACS Appl. Energy Mater. 2018, 1, 799–806. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, C.; Ecker, B.; Yang, J.; Huang, J.; Gao, Y. Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film. J. Phys. Chem. C 2017, 121, 3904–3910. [Google Scholar] [CrossRef]
- Wei, D.; Wang, T.; Ji, J.; Li, M.; Cui, P.; Li, Y.; Li, G.; Mbengue, J.M.; Song, D. Photo-Induced Degradation of Lead Halide Perovskite Solar Cells Caused by the Hole Transport Layer/Metal Electrode Interface. J. Mater. Chem. A Mater. 2016, 4, 1991–1998. [Google Scholar] [CrossRef]
- Wu, T.; Ono, L.K.; Yoshioka, R.; Ding, C.; Zhang, C.; Mariotti, S.; Zhang, J.; Mitrofanov, K.; Liu, X.; Segawa, H.; et al. Elimination of Light-Induced Degradation at the Nickel Oxide-Perovskite Heterojunction by Aprotic Sulfonium Layers towards Long-Term Operationally Stable Inverted Perovskite Solar Cells. Energy Environ. Sci. 2022, 15, 4612–4624. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Fan, Y.; Li, Z.; Pang, S. UV Degradation of the Interface between Perovskites and the Electron Transport Layer. RSC Adv. 2020, 10, 11551–11556. [Google Scholar] [CrossRef] [PubMed]
- Safdari, M.; Kim, D.; Balvanz, A.; Kanatzidis, M.G. Mitigation of Halide Segregation by Cation Composition Management in Wide Bandgap Perovskites. ACS Energy Lett. 2024, 9, 3400–3408. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, L.; Zhu, T.; Chen, H.; Chen, B.; Kubicki, D.J.; Balvanz, A.; Li, C.; Maxwell, A.; Ugur, E.; et al. Suppressed Phase Segregation for Triple-Junction Perovskite Solar Cells. Nature 2023, 618, 74–79. [Google Scholar] [CrossRef]
- Xu, J.; Boyd, C.C.; Yu, Z.J.; Palmstrom, A.F.; Witter, D.J.; Larson, B.W.; France, R.M.; Werner, J.; Harvey, S.P.; Wolf, E.J.; et al. Triple-Halide Wide-Band Gap Perovskites with Suppressed Phase Segregation for Efficient Tandems. Science 2020, 367, 1097–1104. [Google Scholar] [CrossRef]
- Ghorai, A.; Singh, S.; Roy, B.; Bose, S.; Mahato, S.; Mukhin, N.; Jha, P.; Ray, S.K. Suppression of Light-Induced Phase Segregations in Mixed Halide Perovskites through Ligand Passivation. J. Phys. Chem. Lett. 2025, 16, 1760–1768. [Google Scholar] [CrossRef]
- Yang, J.; Gan, Y.; Han, M.; Wang, S.; Li, P.; Zhang, Y.; Li, G.; Song, Y. Suppression of Light-Induced Phase Segregation in All-Inorganic Wide-Bandgap Perovskite Solar Cells via Molecular Interaction Design. J. Energy Chem. 2025, 108, 550–557. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Z.; Vlaic, S.; Xin, C.; Pons, S.; Billot, L.; Aigouy, L.; Chen, Z. Synergetic Exterior and Interfacial Approaches by Colloidal Carbon Quantum Dots for More Stable Perovskite Solar Cells Against UV. Small 2024, 20, 2401505. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, S.; Lee, N.K.; Cho, H.E.; Park, S.J.; Kim, J.H.; Lee, N.; Kim, S.K.; Cho, S.H.; Lee, S.M. Ultraviolet-Resistant Flexible Perovskite Solar Cells with Enhanced Efficiency Through Attachable Nanophotonic Downshifting and Light Trapping. Small 2025, 21, 2501374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, X.; Liu, Z.; Guo, M.; Zhang, Y.; Li, Y.; Li, J.; Wei, M. UV-Robust and Efficient Perovskite Solar Cells Enabled by Interfacial Photocatalysis Suppression and Defect Passivation. J. Mater. Chem. A Mater. 2023, 11, 14959–14970. [Google Scholar] [CrossRef]
- Fei, C.; Kuvayskaya, A.; Shi, X.; Wang, M.; Shi, Z.; Jiao, H.; Silverman, T.J.; Owen-Bellini, M.; Dong, Y.; Xian, Y.; et al. Strong-Bonding Hole-Transport Layers Reduce Ultraviolet Degradation of Perovskite Solar Cells. Science 2024, 384, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Valencia, A.; Zhu, Y.; Zhang, X.; Li, W.; Daoud, W.A. Melatonin Treatment as an Anti-Aging Therapy for UV-Related Degradation of Perovskite Solar Cells. J. Mater. Chem. A Mater. 2024, 12, 11986–11994. [Google Scholar] [CrossRef]
- Zhi, C.; Li, C.; Wan, Z.; Liu, C.; Jiang, Z.; Zunair, H.; Du, L.; Zhang, S.; Li, Z.; Shi, J.; et al. Boosting Efficiency and UV Resistance in Perovskite Solar Cells via Sunscreen Ingredient Octinoxate. Adv. Funct. Mater. 2024, 34, 2403321. [Google Scholar] [CrossRef]
- Luo, W.; Wen, H.; Guo, Y.; Yin, T.; Tan, H.; Zhang, Z.; Si, S.; Zhang, Z.; Wu, H.; Huang, S. Simultaneous Ultraviolet Conversion and Defect Passivation Stabilize Efficient and Operational Durable Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2400474. [Google Scholar] [CrossRef]
- Seo, J.; Shin, Y.S.; Lee, D.G.; Lee, J.; Roe, J.; Son, J.G.; Lee, W.; Lee, Y.; Lee, D.; Song, J.W.; et al. Stabilized Intermediate Phase Via Pseudo-Halide Anions Toward Highly Efficient and Light-Soaking Stable Perovskite Solar Cells. Adv. Funct. Mater. 2025, 35, 2413390. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Jiang, Z.; Shen, H.; Gong, X. Mobile Oxygen Capture Enhances Photothermal Stability of Perovskite Solar Cells Under ISOS Protocols. Adv. Mater. 2025, 37, 2500268. [Google Scholar] [CrossRef]
- Tuo, B.; Wang, Z.; Ren, Z.; Zhang, H.; Lu, X.; Zhang, Y.; Zang, S.; Song, Y. A Novel Radical-Reaction Interruption Strategy for Enhancing the Light Stability of Perovskite Solar Cells. Energy Environ. Sci. 2024, 17, 2945–2955. [Google Scholar] [CrossRef]
- Lu, X.; Sun, K.; Wang, Y.; Liu, C.; Meng, Y.; Lang, X.; Xiao, C.; Tian, R.; Song, Z.; Zhu, Z.; et al. Dynamic Reversible Oxidation-Reduction of Iodide Ions for Operationally Stable Perovskite Solar Cells under ISOS-L-3 Protocol. Adv. Mater. 2024, 36, 2400852. [Google Scholar] [CrossRef]
- Yang, M.; Bai, Y.; Meng, Y.; Tian, R.; Sun, K.; Lu, X.; Pan, H.; Wang, J.; Zhou, S.; Zhang, J.; et al. Sn-Pb Perovskite with Strong Light and Oxygen Stability for All-Perovskite Tandem Solar Cells. Adv. Mater. 2025, 37, 2415627. [Google Scholar] [CrossRef]
- Ye, X.; Yuan, W.; Fu, P.; Yang, X.; Chu, X.; Bai, Y.; Sun, Y.; Cheng, H.M. A Full-Process Artificial Intelligence Framework for Perovskite Solar Cells. Sci. China Mater. 2025, 68, 2526–2535. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rijal, B.; Alzoubi, K.M.; Chen, Z.; Latif Khammash, A.; Lu, S.; Dhakal, T.P. Understanding the Long-Term Instability in Perovskite Solar Cells: Mechanisms and Mitigation Strategies. Electronics 2025, 14, 4428. https://doi.org/10.3390/electronics14224428
Rijal B, Alzoubi KM, Chen Z, Latif Khammash A, Lu S, Dhakal TP. Understanding the Long-Term Instability in Perovskite Solar Cells: Mechanisms and Mitigation Strategies. Electronics. 2025; 14(22):4428. https://doi.org/10.3390/electronics14224428
Chicago/Turabian StyleRijal, Bipin, Khalid M. Alzoubi, Zeying Chen, Abdel Latif Khammash, Susan Lu, and Tara P. Dhakal. 2025. "Understanding the Long-Term Instability in Perovskite Solar Cells: Mechanisms and Mitigation Strategies" Electronics 14, no. 22: 4428. https://doi.org/10.3390/electronics14224428
APA StyleRijal, B., Alzoubi, K. M., Chen, Z., Latif Khammash, A., Lu, S., & Dhakal, T. P. (2025). Understanding the Long-Term Instability in Perovskite Solar Cells: Mechanisms and Mitigation Strategies. Electronics, 14(22), 4428. https://doi.org/10.3390/electronics14224428

