A Steganalysis Method Based on Relationship Mining
Abstract
1. Introduction
- We propose a steganalysis approach that leverages relationship mining, where local-focused and globally adaptive patterns are employed to guide graph relation modeling and capture global features. In the feature space, feature clustering and contrastive learning are incorporated to enlarge inter-class global differences, thereby generating a more discriminative decision boundary and maximizing the utilization of global relationships for classification.
- We analyze the characteristics of features at different layers in traditional convolutional networks. To balance the large receptive field but insufficient local detail of deep features with the small receptive field but fine-grained detail of shallow features, we propose a cross-attention method between deep and shallow features. In this approach, deep features guide shallow features to obtain representations that not only maintain a large receptive field but also preserve sufficient local details.
- We conduct extensive experiments to demonstrate the effectiveness of the proposed method. Ablation studies are performed to verify the contribution of each module, and visualization analyses are provided to further illustrate the performance of our model.
2. Related Work
2.1. Development of Steganalysis
2.2. Development of Relationship Mining Techniques
3. Method
3.1. Overview
3.2. Feature Fusion Module
3.3. Relationship Mining Module
3.3.1. Adaptive Adjacency Matrix
3.3.2. Relation-Aware
3.3.3. Feature Distribution Enhancement
4. Experiments
4.1. Datasets
4.2. Experimental Environment
4.3. Comparison with Other Approaches
4.4. Model Generalization Performance
4.5. Detailed Exploration of the Relationship Mining Module
4.5.1. Investigation of Graph Node Partitioning
4.5.2. On the Local Fully-Connected Range in the Adjacency Matrix
4.5.3. Investigation of the Threshold for Dynamic Connections
4.5.4. Comparison Between RMNet and Vision Transformer-Based Steganalysis Models
4.5.5. Investigation of the Teleport Probability and the Loss Function Weights in Graph Computation
4.6. Visualization and Complexity Analysis
4.7. Ablation Studies
4.7.1. Effectiveness of the Feature Fusion Module
4.7.2. Effectiveness of the Relationship Mining Module
4.8. Performance on the Alaska #2 Dataset
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farooq, N.; Selwal, A. Image steganalysis using deep learning: A systematic review and open research challenges. J. Ambient Intell. Human Comput. 2023, 14, 7761–7793. [Google Scholar] [CrossRef]
- Lin, K.; Li, B.; Li, W.; Barni, M.; Tondi, B.; Liu, X. Constructing an intrinsically robust steganalyzer via learning neighboring feature relationships and self-adversarial adjustment. IEEE Trans. Inf. Forensics Secur. 2024, 19, 9390–9405. [Google Scholar] [CrossRef]
- Yedroudj, M.; Comby, F.; Chaumont, M. Yedroudj-Net: An efficient CNN for spatial steganalysis. In Proceedings of the IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2092–2096.
- Boroumand, M.; Chen, M.; Fridrich, J. Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1181–1193. [Google Scholar] [CrossRef]
- Reinel, T.-S.; Brayan, A.A.H.; Alejandro, B.O.M.; Alejandro, M.R.; Daniel, A.G.; Alejandro, A.G.; Alejandro Buenaventura, B.J.; Simon, O.-A.; Gustavo, I.; Raúl, R.-P.; et al. JGBRAS-Net: A convolutional neural network architecture for spatial image steganalysis. IEEE Access 2021, 9, 14340–14350. [Google Scholar] [CrossRef]
- You, W.; Zhang, H.; Zhao, X. A Siamese CNN for image steganalysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 291–306. [Google Scholar] [CrossRef]
- Weng, S.; Chen, M.; Yu, L.; Sun, S. Lightweight and effective deep image steganalysis network. IEEE Signal Process. Lett. 2022, 29, 1888–1892. [Google Scholar] [CrossRef]
- Luo, G.; Wei, P.; Zhu, S.; Zhang, X.; Qian, Z.; Li, S. Image steganalysis with convolutional vision transformer. In Proceedings of the IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 3089–3093.
- Fu, T.; Chen, L.; Jiang, Y.; Jia, J.; Fu, Z. Image steganalysis based on dual-path enhancement and fractal downsampling. IEEE Trans. Inf. Forensics Secur. 2025, 20, 1–16. [Google Scholar] [CrossRef]
- Wei, K.; Luo, W.; Huang, J. Color image steganalysis based on pixel difference convolution and enhanced transformer with selective pooling. IEEE Trans. Inf. Forensics Secur. 2024, 19, 9970–9983. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–14. [Google Scholar]
- Sharma, K.; Lee, Y.-C.; Nambi, S.; Salian, A.; Shah, S.; Kim, S.-W.; Kumar, S. A survey of graph neural networks for social recommender systems. ACM Comput. Surv. 2024, 56, 1–34. [Google Scholar] [CrossRef]
- Ye, Z.; Kumar, Y.J.; Sing, G.O.; Song, F.; Wang, J. A comprehensive survey of graph neural networks for knowledge graphs. IEEE Access 2022, 10, 75729–75741. [Google Scholar] [CrossRef]
- Bera, A.; Wharton, Z.; Liu, Y.; Bessis, N.; Behera, A. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 2022, 31, 6017–6031. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, A.; Liu, Y.; Kedarisetty, S.; Zhao, Y.; Ahmed, A.; Behera, A. Interweaving insights: High-order feature interaction for fine-grained visual recognition. Int. J. Comput. Vis. 2025, 133, 1755–1779. [Google Scholar] [CrossRef] [PubMed]
- Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then propagate: Graph neural networks meet personalized PageRank. In Proceedings of the International Conference Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lyu, S.; Farid, H. Detecting hidden messages using higher-order statistics and support vector machines. In Proceedings of the International Workshop on Information Hiding, Berlin, Germany, 7–9 October 2002; pp. 340–354. [Google Scholar]
- Fridrich, J.; Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef]
- Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444. [Google Scholar] [CrossRef]
- Tang, W.; Li, H.; Luo, W.; Huang, J. Adaptive steganalysis based on embedding probabilities of pixels. IEEE Trans. Inf. Forensics Secur. 2016, 11, 734–745. [Google Scholar] [CrossRef]
- Ye, J.; Ni, J.; Yi, Y. Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2545–2557. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, J.; Wang, W.; Tan, T. Learning and transferring representations for image steganalysis using convolutional neural network. In Proceedings of the IEEE International Conference Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2752–2756. [Google Scholar]
- Xu, G.; Wu, H.Z.; Shi, Y.Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 2016, 23, 708–712. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, M.; Ke, Y.; Bi, X.; Kong, Y. Image steganalysis based on attention augmented convolution. Multimed. Tools Appl. 2022, 81, 19471–19490. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, L.; Wu, H. Graph representation learning for spatial image steganalysis. In Proceedings of the IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), Shanghai, China, 26–28 September 2022; pp. 1–5. [Google Scholar]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Liu, Q.; Yang, Z.; Wu, H. JPEG steganalysis based on steganographic feature enhancement and graph attention learning. J. Electron. Imaging 2023, 32, 033032. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Bas, P.; Filler, T.; Pevný, T. Break our steganographic system: The ins and outs of organizing BOSS. In Proceedings of the International Workshop on Information Hiding, Prague, Czech Republic, 18–20 May 2011; pp. 59–70. [Google Scholar]
- Bas, P.; Furon, T. BOWS-2. 2007. Available online: https://data.mendeley.com/datasets/kb3ngxfmjw/1 (accessed on 2 June 2023).
- Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2–5 December 2012; pp. 234–239. [Google Scholar]
- Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1, 1. [Google Scholar] [CrossRef]
- Li, B.; Wang, M.; Huang, J.; Li, X. A new cost function for spatial image steganography. In Proceedings of the IEEE International Conference Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4206–4210. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Cogranne, R.; Giboulot, Q.; Bas, P. The ALASKA steganalysis challenge: A first step towards steganalysis. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Paris, France, 3–5 July 2019; pp. 125–137. [Google Scholar]




| Algorithm | bpp | LWENet | DFNet | SiaSteg-Net | GBRAS-Net | SRNet | RMNet |
|---|---|---|---|---|---|---|---|
| WOW | 0.4 | 96.63 | 97.10 | 95.86 | 95.98 | 94.95 | 97.15 |
| S-UNIWARD | 0.4 | 96.42 | 96.39 | 95.42 | 95.41 | 94.72 | 96.86 |
| Hill | 0.4 | 92.18 | 93.02 | 90.99 | 90.13 | 89.37 | 93.35 |
| WOW | 0.3 | 95.31 | 95.41 | 93.29 | 93.55 | 90.70 | 95.66 |
| S-UNIWARD | 0.3 | 93.84 | 94.42 | 93.83 | 91.94 | 88.10 | 94.66 |
| Hill | 0.3 | 90.52 | 90.55 | 88.23 | 87.70 | 81.35 | 90.58 |
| WOW | 0.2 | 92.80 | 92.51 | 86.51 | 90.73 | 83.24 | 93.13 |
| S-UNIWARD | 0.2 | 90.92 | 91.27 | 85.03 | 89.30 | 81.62 | 91.61 |
| Hill | 0.2 | 85.59 | 85.93 | 80.35 | 81.25 | 76.47 | 85.96 |
| WOW | 0.1 | 85.96 | 86.47 | 78.23 | 80.32 | 74.13 | 86.20 |
| S-UNIWARD | 0.1 | 81.02 | 82.70 | 73.78 | 76.47 | 68.96 | 82.03 |
| Hill | 0.1 | 76.19 | 74.64 | 70.62 | 70.25 | 68.66 | 77.34 |
| Algorithm | bpp | LWENet | DFNet | SiaSteg-Net | GBRAS-Net | SRNet | RMNet |
|---|---|---|---|---|---|---|---|
| WOW | 0.4 | 94.36 | 95.25 | 94.50 | 92.93 | 93.56 | 95.75 |
| HUGO | 0.4 | 78.79 | 76.86 | 81.37 | 81.22 | 84.60 | 82.31 |
| MiPOD | 0.4 | 86.81 | 86.59 | 87.31 | 85.02 | 87.43 | 87.74 |
| Hill | 0.4 | 74.88 | 66.69 | 75.89 | 75.84 | 76.49 | 76.80 |
| Algorithm | bpp | 4 × 4 | 8 × 8 | 16 × 16 | 32 × 32 |
|---|---|---|---|---|---|
| WOW | 0.4 | 96.12 | 96.83 | 97.15 | 96.25 |
| S-UNIWARD | 0.4 | 96.20 | 96.57 | 96.86 | 96.74 |
| Hill | 0.4 | 92.31 | 92.78 | 93.35 | 93.12 |
| Algorithm | bpp | Model 1 (R = 0) | Model 2 (R = 1) | Model 4 (R = 3) | Model 5 (R = 5) | Model 5 (R = 7) | Model 6 (R = Global) |
|---|---|---|---|---|---|---|---|
| WOW | 0.4 | 97.01 | 96.82 | 96.88 | 97.15 | 96.95 | 96.93 |
| S-UNIWARD | 0.4 | 96.71 | 96.53 | 96.34 | 96.86 | 96.42 | 96.31 |
| Hill | 0.4 | 92.71 | 92.58 | 92.63 | 93.35 | 92.22 | 92.10 |
| Algorithm | bpp | Model 1 () | Model 2 () | Model 3 () | Model 4 () |
|---|---|---|---|---|---|
| WOW | 0.4 | 96.35 | 96.65 | 96.82 | 97.15 |
| S-UNIWARD | 0.4 | 96.12 | 96.42 | 96.32 | 96.86 |
| Hill | 0.4 | 96.15 | 92.27 | 92.35 | 93.35 |
| Method | Model | Algorithms | |
|---|---|---|---|
| 0.4 bpp-Hill | 0.4 bpp-WOW | ||
| Vision Transformer | Luo-Net | 85.61 | 92.10 |
| Relationship Mining | RMNet | 89.45 | 95.18 |
| Teleport Probability | Loss Weights | Algorithm | ||
|---|---|---|---|---|
| 0.4 bpp-Hill | ||||
| 0.3 | 1 | 0.5 | 0.5 | 92.94 |
| 0.3 | 1 | 2 | 2 | 93.17 |
| 0.3 | 1 | 5 | 5 | 91.26 |
| 0.3 | 1 | 1 | 1 | 93.35 |
| 0.1 | 1 | 1 | 1 | 92.94 |
| 0.5 | 1 | 1 | 1 | 92.62 |
| 0.7 | 1 | 1 | 1 | 92.86 |
| 0.9 | 1 | 1 | 1 | 92.38 |
| Models | Number of Parameters (M) | Training Time (h) |
|---|---|---|
| SRNet | 4.77 | 31.7 |
| DFNet | 0.30 | 16.2 |
| LWENet | 0.38 | 11.5 |
| SiaStegNet | 0.71 | 14.3 |
| RMNet | 0.91 | 13.2 |
| Algorithm | bpp | Feature Fusion ✕ | Feature Fusion ✓ |
|---|---|---|---|
| WOW | 0.4 | 96.55 | 97.15 |
| S-UNIWARD | 0.4 | 96.69 | 96.86 |
| Hill | 0.4 | 93.05 | 93.35 |
| Components | Algorithm | |||
|---|---|---|---|---|
| Relation-Aware | Feature Distribution Enhancement | WOW (0.4 bpp) | S-UNIWARD (0.4 bpp) | Hill (0.4 bpp) |
| ✕ | ✕ | 96.63 | 96.42 | 92.18 |
| ✓ | ✕ | 96.72 | 96.63 | 92.34 |
| ✕ | ✓ | 96.85 | 96.77 | 92.82 |
| ✓ | ✓ | 97.15 | 96.86 | 93.35 |
| Algorithm | bpp | LWENet | DFNet | SiaSteg-Net | GBRAS-Net | SRNet | RMNet |
|---|---|---|---|---|---|---|---|
| WOW | 0.6 | 72.43 | 72.03 | 71.73 | 64.92 | 70.80 | 73.05 |
| S-UNIWARD | 0.6 | 71.50 | 70.62 | 71.13 | 69.88 | 69.97 | 71.65 |
| Hill | 0.6 | 69.38 | 68.85 | 67.70 | 67.47 | 62.00 | 69.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Yang, Y.; Zhou, L.; Meng, X. A Steganalysis Method Based on Relationship Mining. Electronics 2025, 14, 4347. https://doi.org/10.3390/electronics14214347
Yang R, Yang Y, Zhou L, Meng X. A Steganalysis Method Based on Relationship Mining. Electronics. 2025; 14(21):4347. https://doi.org/10.3390/electronics14214347
Chicago/Turabian StyleYang, Ruiyao, Yu Yang, Linna Zhou, and Xiangli Meng. 2025. "A Steganalysis Method Based on Relationship Mining" Electronics 14, no. 21: 4347. https://doi.org/10.3390/electronics14214347
APA StyleYang, R., Yang, Y., Zhou, L., & Meng, X. (2025). A Steganalysis Method Based on Relationship Mining. Electronics, 14(21), 4347. https://doi.org/10.3390/electronics14214347

