Performance Improvement of Polarization Image Sensor with Multilayer On-Pixel Polarizer Structure for High-Sensitivity Millimeter-Wave Electro-Optic Imaging
Abstract
1. Introduction
2. High-Sensitivity Polarization Imaging System
2.1. Fabricated Polarization Image Sensor
2.2. Extinction Ratio Improvement and Theoretical Measurement Sensitivity by Using Multilayer On-Pixel Polarizers
2.3. Crosstalk Prevention by Changing Pixel Separation Voltage
2.4. Evaluation of Angle-of-Incidence Dependence of Multilayer On-Pixel Polarizer Structure
3. Millimeter-Wave Electric Field Imaging Demonstration
3.1. Imaging Setup
3.2. Millimeter-Wave Patch Antenna Electric Field Imaging Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, F.; Wang, X.; Tang, M.; Zhang, J.; Wang, L.; Liu, X.; Yang, Q. High-frequency electric field intensity measurement based on frequency shift with high gain and wide frequency range. Opt. Commun. 2023, 545, 129682. [Google Scholar] [CrossRef]
- Lee, D.J.; Kang, N.W.; Choi, J.H.; Kim, J.; Whitaker, J.F. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing. Sensors 2011, 11, 806–824. [Google Scholar] [CrossRef] [PubMed]
- Baudry, D.; Louis, A.; Mazari, B. Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications. Prog. Electromagn. Res. 2006, 60, 311–333. [Google Scholar] [CrossRef]
- Hisatake, S.; Pham, H.H.N.; Nagatsuma, T. Visualization of the spatial–temporal evolution of continuous electromagnetic waves in the terahertz range based on photonics technology. Optica 2014, 1, 365–371. [Google Scholar] [CrossRef]
- Sasaki, A.; Nagatsuma, T. Electric-field scanning system using electro-optic sensor. IEICE Trans. Electron. 2003, 86, 1345–1351. [Google Scholar]
- Sasagawa, K.; Kanno, A.; Kawanishi, T.; Tsuchiya, M. Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields. IEEE Trans. Microw. Theory Tech. 2007, 55, 2782–2791. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Takata, S.; Ohsone, K.; Fukui, S.; Yorinaga, M. Nanoscopic live electrooptic imaging. Sci. Rep. 2021, 11, 5541. [Google Scholar] [CrossRef]
- Constable, E.; Lewis, R.A. Optical parameters of ZnTe determined using continuous-wave terahertz radiation. J. Appl. Phys. 2012, 112, 063104. [Google Scholar] [CrossRef]
- Tripathi, S.R.; Aoki, M.; Takeda, M.; Asahi, T.; Hosako, I.; Hiromoto, N. Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy. Jpn. J. Appl. Phys. 2013, 52, 042401. [Google Scholar] [CrossRef]
- Valdmanis, J.; Mourou, G.; Gabel, C. Subpicosecond electrical sampling. IEEE J. Quantum Electron. 1983, 19, 664–667. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Sun, W.; Ye, J.; Zhang, Y. Terahertz polarization real-time imaging based on balanced electro-optic detection. J. Opt. Soc. Am. A 2010, 27, 2387–2393. [Google Scholar] [CrossRef]
- Winnewisser, C.; Jepsen, P.U.; Schall, M.; Schyja, V.; Helm, H. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phys. Lett. 1997, 70, 3069–3071. [Google Scholar] [CrossRef]
- Okada, R.; Sasagawa, K.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Improvement of on-pixel polarizer with 0.35 µm CMOS process for electro-optic imaging systems. Jpn. J. Appl. Phys. 2023, 62, SC1052. [Google Scholar] [CrossRef]
- Sasagawa, K.; Okada, R.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Reflective high-sensitivity polarization change imaging using a dual polarizer structure. Opt. Contin. 2023, 2, 758–768. [Google Scholar] [CrossRef]
- Okada, R.; Mizuno, M.; Nagaoka, T.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J.; Sasagawa, K. Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source. Sensors 2024, 24, 4138. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels. IEEE Trans. Electron Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Testorf, M.; Jahns, J.; Khilo, N.A.; Goncharenko, A.M. Talbot effect for oblique angle of light propagation. Opt. Commun. 1996, 129, 167–172. [Google Scholar] [CrossRef]
- Azaña, J.; Guillet de Chatellus, H. Angular talbot effect. Phys. Rev. Lett. 2014, 112, 213902. [Google Scholar] [CrossRef]
- Varghese, V.; Chen, S. Polarization-based angle sensitive pixels for light field image sensors with high spatio-angular resolution. IEEE Sensors J. 2016, 16, 5183–5194. [Google Scholar] [CrossRef]
- Wang, A.; Gill, P.; Molnar, A. Light field image sensors based on the Talbot effect. Appl. Opt. 2009, 48, 5897–5905. [Google Scholar] [CrossRef]
- Gill, P.R.; Lee, C.; Lee, D.G.; Wang, A.; Molnar, A. A microscale camera using direct Fourier-domain scene capture. Opt. Lett. 2011, 36, 2949–2951. [Google Scholar] [CrossRef]
- Sugie, K.; Sasagawa, K.; Guinto, M.; Haruta, M.; Tokuda, T.; Ohta, J. Implantable CMOS image sensor with incident-angle-selective pixels. Electron. Lett. 2019, 55, 729–731. [Google Scholar] [CrossRef]
- Walpole, J. Semiconductor amplifiers and lasers with tapered gain regions. Opt. Quantum Electron. 1996, 28, 623–645. [Google Scholar] [CrossRef]
- Voigt, D.; Schilder, E.; Spreeuw, R.; Van Linden van den Heuvell, H. Characterization of a high-power tapered semiconductor amplifier system. Appl. Phys. B 2001, 72, 279–284. [Google Scholar] [CrossRef]
- Wakana, S.; Ohara, T.; Abe, M.; Yamazaki, E.; Kishi, M.; Tsuchiya, M. Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field. IEEE Trans. Microw. Theory Tech. 2000, 48, 2611–2616. [Google Scholar] [CrossRef]
- Zhou, R.; Xie, Z.; Wang, J.; Lu, G.; Yuan, Y.; Chen, S.; Yeow, J.T. Graphene-integrated microbolometer array imaging system: A novel approach for fast and sensitive terahertz detection in biomedical applications. ACS Appl. Mater. Interfaces 2025, 17, 9103–9114. [Google Scholar] [CrossRef] [PubMed]
- Beig, M.T.A.; Kumar, M.; Sharma, Y.; Sharma, B.K. A Terahertz/Millimeter-Wave Based Detection and Imaging System Using Antenna-Coupled Microbolometer. J. Phys. Conf. Ser. 2022, 2335, 012005. [Google Scholar] [CrossRef]
- Oda, N.; Kurashina, S.; Miyoshi, M.; Doi, K.; Ishi, T.; Sudou, T.; Morimoto, T.; Goto, H.; Sasaki, T. Microbolometer terahertz focal plane array and camera with improved sensitivity at 0.5–0.6 THz. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; Volume 1. [Google Scholar]
- Nemoto, N.; Kanda, N.; Imai, R.; Konishi, K.; Miyoshi, M.; Kurashina, S.; Sasaki, T.; Oda, N.; Kuwata-Gonokami, M. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure. IEEE Trans. Terahertz Sci. Technol. 2015, 6, 175–182. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.; Son, J.-G.; Gupta, A.; Bohus, J.; Fülöp, J.A.; Gebert, T. Linearity of Fast and Highly Sensitive LiTaO3 Pyroelectric Detectors in the Terahertz Range. IEEE Trans. Terahertz Sci. Technol. 2024, 14, 823–829. [Google Scholar] [CrossRef]
- Baghdasaryan, Z.; Babajanyan, A.; Parsamyan, H.; Friedman, B.; Kim, S.; Lee, J.H.; Lee, K. 3D visualization of microwave electric and magnetic fields by using a metasurface-based indicator. Sci. Rep. 2022, 12, 6150. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Ambalathankandy, P.; Ikebe, M. Pixel Variation Characteristics of a Global Shutter THz Imager and its Calibration Technique. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2023, 106, 832–839. [Google Scholar] [CrossRef]
- Kenneth, K.O.; Choi, W.; Han, R. Perspective on active submillimeter electromagnetic wave imaging using CMOS integrated circuits technologies. J. Appl. Phys. 2023, 133, 150903. [Google Scholar] [CrossRef]
- Park, B.J.; Jung, J.; Moon, C.R.; Hwang, S.H.; Lee, Y.W.; Kim, D.W.; Paik, K.H.; Yoo, J.R.; Lee, D.H.; Kim, K. Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7 μm pixel pitch. Jpn. J. Appl. Phys. 2007, 46, 2454. [Google Scholar] [CrossRef]
Technology | 0.35 µm 2-poly 4-metal standard CMOS |
Pixel size | 30 × 30 µm |
Photodiode size | 15 × 15 µm |
Photodiode | n-well/p-sub |
Number of pixels | 80 × 60 (40 × 60 pairs) |
On-pixel polarizer | 0.70/0.70 µm (M1M2M3) |
Extinction Ratio | 5.7 @ 780 nm |
Proposed Image Sensor | Previous Image Sensor | |
---|---|---|
Pixel structure | n-well/p-sub diode | n-well/p-sub diode + MOS-CAP |
On-pixel polarizer | M1M2M3 | M2M3 |
Extinction Radio | 5.7 @ 780 nm | 3.3 @ 780 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, R.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J.; Sasagawa, K. Performance Improvement of Polarization Image Sensor with Multilayer On-Pixel Polarizer Structure for High-Sensitivity Millimeter-Wave Electro-Optic Imaging. Electronics 2025, 14, 4026. https://doi.org/10.3390/electronics14204026
Okada R, Mizuno M, Takehara H, Haruta M, Tashiro H, Ohta J, Sasagawa K. Performance Improvement of Polarization Image Sensor with Multilayer On-Pixel Polarizer Structure for High-Sensitivity Millimeter-Wave Electro-Optic Imaging. Electronics. 2025; 14(20):4026. https://doi.org/10.3390/electronics14204026
Chicago/Turabian StyleOkada, Ryoma, Maya Mizuno, Hironari Takehara, Makito Haruta, Hiroyuki Tashiro, Jun Ohta, and Kiyotaka Sasagawa. 2025. "Performance Improvement of Polarization Image Sensor with Multilayer On-Pixel Polarizer Structure for High-Sensitivity Millimeter-Wave Electro-Optic Imaging" Electronics 14, no. 20: 4026. https://doi.org/10.3390/electronics14204026
APA StyleOkada, R., Mizuno, M., Takehara, H., Haruta, M., Tashiro, H., Ohta, J., & Sasagawa, K. (2025). Performance Improvement of Polarization Image Sensor with Multilayer On-Pixel Polarizer Structure for High-Sensitivity Millimeter-Wave Electro-Optic Imaging. Electronics, 14(20), 4026. https://doi.org/10.3390/electronics14204026