Scale-Fusion Transformer: A Medium-to-Long-Term Forecasting Model for Parking Space Availability
Abstract
1. Introduction
- (a)
- Multi-scale feature decomposition: Time-series patching decomposes parking data into short-period local features and long-period global patterns. Dimensional alignment and fusion are achieved via Adaptive Average Pooling (AAP), overcoming traditional single-scale models’ limitations in concurrent multi-scale pattern extraction.
- (b)
- Transformer-based temporal modeling: A Transformer-encoder architecture processes scale-fusion features with adaptive average pooling. This framework captures complex temporal dependencies while maintaining adaptability across parking facilities and supporting extended forecasting horizons.
- (c)
- Task-adaptive compression: An adaptive data compression mechanism handles potential multi-task demands in smart parking services. Techniques like adaptive average pooling enhance flexibility for diverse prediction tasks (24–720 h/1–30 days), enabling applications ranging from real-time parking guidance to long-term infrastructure planning.
2. Related Work
3. Model Description
3.1. Problem Definition
3.2. SFFormer Model Architecture
- (a)
- Input normalization: At the input stage, each time-series sample undergoes normalization. During this procedure, the series’ mean is first computed and subtracted to eliminate the overall trend. Then, the series’ standard deviation is calculated and used to divide the series, which serves to unify its volatility. In the end, each input series is transformed into a standard form with a zero mean and unit standard deviation. This allows the model to focus more on learning the universal scale-independent patterns embedded in the data.
- (b)
- Output de-normalization: At the output stage, an inverse operation is performed to restore predicted values to their original data scale. To do this, the model’s standardized prediction output is first multiplied by the previously stored standard deviation (to recover the series’ volatility), and then the previously stored mean is added (to restore the baseline level). Through this de-normalization step, the model’s output is converted from the standardized space back to the original numerical values that hold real-world physical meaning.
4. Results
4.1. Experimental Data and Data Analysis
4.1.1. Stationarity Analysis
4.2. Performance Comparison
4.2.1. Experimental Results and Analysis
4.2.2. Baseline Model and Experimental Setup
4.2.3. Ablation Experiment
4.2.4. Error Distribution Characteristics Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SFFormer | Scale-Fusion Transformer |
AAP | Adaptive Average Pooling |
ADF | Augmented Dickey–Fuller |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
References
- Zhang, L.; Wang, B.; Zhang, Q.; Zhu, S.; Ma, Y. Parking Lot Traffic Prediction Based on Fusion of Multifaceted Spatio-Temporal Features. Sensors 2024, 24, 4971. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, S.; Li, W.; Yuan, Q.; Chen, J.; Tang, X. A Short-Term Parking Demand Prediction Framework Integrating Overall and Internal Information. Sustainability 2023, 15, 7096. [Google Scholar] [CrossRef]
- Shang, K.; Wan, Z.; Zhang, Y.; Cui, Z.; Zhang, Z.; Jiang, C.; Zhang, F. Intelligent Short-Term Multiscale Prediction of Parking Space Availability Using an Attention-Enhanced Temporal Convolutional Network. ISPRS Int. J. Geo-Inf. 2023, 12, 208. [Google Scholar] [CrossRef]
- Bontempi, G.; Birattari, M.; Bersini, H. Local Learning for Iterated Time-Series Prediction. In Proceedings of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 27–30 June 1999; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1999; pp. 32–38. [Google Scholar]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting. Proc. AAAI Conf. Artif. Intell. 2020, 34, 914–921. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Liu, Y.; Zhou, J.; Xiong, H. Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction. Proc. AAAI Conf. Artif. Intell. 2020, 34, 1186–1193. [Google Scholar] [CrossRef]
- Guo, Q.; Fang, L.; Wang, R.; Zhang, C. Multivariate Time Series Forecasting Using Multiscale Recurrent Networks with Scale Attention and Cross-Scale Guidance. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ma, Z.; Wang, X.; Wen, Q.; Sun, L.; Yao, T.; Yin, W.; Jin, R. FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 12677–12690. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Advances in Neural Information Processing Systems 34, Proceedings of the Annual Conference on Neural Information Processing Systems 2021 (NeurIPS 2021), Online, 6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W., Eds.; Neural Information Processing Systems Foundation Inc.: San Diego, CA, USA, 2021; pp. 22419–22430. [Google Scholar]
- Zhang, D.; Qiao, Y.; She, L.; Shen, R.; Ren, J.; Zhang, Y. Two Time-Scale Resource Management for Green Internet of Things Networks. IEEE Internet Things J. 2019, 6, 545–556. [Google Scholar] [CrossRef]
- Balmer, M.; Weibel, R.; Huang, H. Value of incorporating geospatial information into the prediction of on-street parking occupancy: A case study. Geo-Spat. Inf. Sci. 2021, 24, 438–457. [Google Scholar] [CrossRef]
- Feng, Y.; Tang, Z.; Xu, Y.; Krishnamoorthy, S.; Hu, Q. Predicting vacant parking space availability zone-wisely: A densely connected ConvLSTM method. In Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 25–28 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In Proceedings of the International Conference on Machine Learning, ICML 2022, Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In Proceedings of the Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Park, C.; Lee, C.; Bahng, H.; Tae, Y.; Kim, K.; Jin, S.; Ko, S.; Choo, J. ST-GRAT: A Novel Spatio-Temporal Graph Attention Networks for Accurately Forecasting Dynamically Changing Road Speed. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management 2020, Galway, Ireland, 19–23 October 2020; pp. 1215–1224. [Google Scholar] [CrossRef]
- Liu, C.; Hettige, K.H.; Xu, Q.; Long, C.; Xiang, S.; Cong, G. ST-LLM+: Graph Enhanced Spatio-Temporal Large Language Models for Traffic Prediction. IEEE Trans. Knowl. Data Eng. 2025, 37, 4846–4859. [Google Scholar] [CrossRef]
- Ju, W.; Zhao, Y.; Qin, Y.; Yi, S.; Yuan, J.; Xiao, Z.; Luo, X.; Yan, X.; Zhang, M. COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting. Inf. Fusion 2024, 107, 102341. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, K.; Yang, Q. Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2023, Long Beach, CA, USA, 5 August 2023; pp. 1032–1043. [Google Scholar] [CrossRef]
- Feng, Y.; Qin, Y.; Zhao, S. Correlation-split and Recombination-sort Interaction Networks for air quality forecasting. Appl. Soft Comput. 2023, 145, 110544. [Google Scholar] [CrossRef]
- Li, J.; Qu, H.; You, L. An Integrated Approach for the Near Real-Time Parking Occupancy Prediction. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3769–3778. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? Proc. AAAI Conf. Artif. Intell. 2023, 37, 11121–11128. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Wang, J.; Long, M. Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors. In Advances in Neural Information Processing Systems 36, Proceedings of the Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, 10–16 December 2023; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Neural Information Processing Systems Foundation Inc.: San Diego, CA, USA, 2023. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. In Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In Proceedings of the Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Ren, Y.; Liu, A.; Mao, X.; Li, F. An intelligent charging scheme maximizing the utility for rechargeable network in smart city. Pervasive Mob. Comput. 2021, 77, 101457. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Xu, X.; Cao, W. A public and large-scale expert information fusion method and its application: Mining public opinion via sentiment analysis and measuring public dynamic reliability. Inf. Fusion 2022, 78, 71–85. [Google Scholar] [CrossRef]
Dataset | ADF Statistic | ADF p-Value | KPSS Statistic | KPSS p-Value | Stationarity |
---|---|---|---|---|---|
C1 | −8.4060 | 2.17 × 10−13 | 0.2361 | 0.100000 | Stationary |
C2 | −8.5443 | 9.60 × 10−14 | 0.1078 | 0.100000 | Stationary |
C3 | −8.8923 | 1.23 × 10−14 | 1.3949 | 0.010000 | Non-Stationary |
C4 | −12.5428 | 2.29 × 10−23 | 0.0376 | 0.100000 | Stationary |
C5 | −10.3025 | 3.34 × 10−18 | 0.2107 | 0.100000 | Stationary |
C6 | −9.0999 | 3.63 × 10−15 | 0.1317 | 0.100000 | Stationary |
C7 | −9.5234 | 3.02 × 10−16 | 0.1146 | 0.100000 | Stationary |
C8 | −8.4773 | 1.42 × 10−13 | 0.4448 | 0.057859 | Stationary |
Models | SFFormer | PatchTST | iTransformer | DLinear | Autoformer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
Park lots C1 | 24 | 0.0261 | 0.1231 | 0.0293 | 0.1241 | 0.0471 | 0.1491 | 0.0711 | 0.1822 | 0.7937 | 0.6738 |
48 | 0.0392 | 0.1475 | 0.0460 | 0.1589 | 0.0671 | 0.1667 | 0.0872 | 0.2025 | 0.5512 | 0.6025 | |
96 | 0.0629 | 0.1942 | 0.0728 | 0.2091 | 0.0669 | 0.1787 | 0.0956 | 0.2145 | 0.5432 | 0.6096 | |
144 | 0.0533 | 0.1748 | 0.0766 | 0.2066 | 0.0703 | 0.1894 | 0.0971 | 0.2159 | 0.8022 | 0.7070 | |
216 | 0.0631 | 0.1891 | 0.1004 | 0.2374 | 0.0825 | 0.2101 | 0.0998 | 0.2184 | 0.3983 | 0.4998 | |
288 | 0.0756 | 0.2021 | 0.1021 | 0.2349 | 0.1048 | 0.2391 | 0.1033 | 0.2221 | 0.5683 | 0.5997 | |
576 | 0.0950 | 0.2260 | 0.0945 | 0.2301 | 0.2010 | 0.3131 | 0.1122 | 0.234 | 0.8805 | 0.7512 | |
720 | 0.1086 | 0.2399 | 0.1108 | 0.2471 | 0.2310 | 0.3337 | 0.1143 | 0.2372 | 0.4174 | 0.5248 | |
Optimal Counts | 7 | 6 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Arg | 16 | 144 | ||||||
---|---|---|---|---|---|---|---|---|
Park lots C1 | 24 | 0.0310 | 0.0261 | 0.0300 | 0.0257 | 0.0271 | 0.0269 | 0.0290 |
48 | 0.0485 | 0.0392 | 0.0465 | 0.0483 | 0.0449 | 0.0777 | 0.0511 | |
96 | 0.0604 | 0.0629 | 0.0573 | 0.1022 | 0.0641 | 0.0629 | 0.0627 | |
144 | 0.0626 | 0.0533 | 0.0546 | 0.0528 | 0.0596 | 0.0687 | 0.0743 | |
216 | 0.0741 | 0.0631 | 0.0577 | 0.0586 | 0.0618 | 0.0611 | 0.0718 | |
288 | 0.0804 | 0.0756 | 0.0718 | 0.0643 | 0.0657 | 0.0735 | 0.0756 | |
576 | 0.0962 | 0.0950 | 0.0781 | 0.0806 | 0.0840 | 0.0867 | 0.1014 | |
720 | 0.1091 | 0.1086 | 0.0994 | 0.0973 | 0.0989 | 0.0894 | 0.1137 | |
Optimal Counts | 0 | 0 | 0 | 3 | 3 | 1 | 0 |
Arg | 16 | 144 | ||||||
---|---|---|---|---|---|---|---|---|
= 576 | 576 | 576 | 576 | 576 | 576 | 576 | ||
Park lots C1 | 24 | 0.0333 | 0.0274 | 0.0282 | 0.0271 | 0.0282 | 0.0271 | 0.0264 |
48 | 0.0544 | 0.0446 | 0.0404 | 0.0431 | 0.0454 | 0.0458 | 0.0489 | |
96 | 0.0566 | 0.0544 | 0.0502 | 0.0587 | 0.0624 | 0.0567 | 0.0526 | |
144 | 0.0697 | 0.0674 | 0.0560 | 0.0610 | 0.0567 | 0.0827 | 0.0670 | |
216 | 0.0939 | 0.0833 | 0.0678 | 0.0828 | 0.0756 | 0.0866 | 0.0678 | |
288 | 0.0953 | 0.0982 | 0.0804 | 0.089 | 0.0876 | 0.0851 | 0.0696 | |
576 | 0.0906 | 0.0921 | 0.0762 | 0.0826 | 0.0735 | 0.0781 | 0.0628 | |
720 | 0.1058 | 0.1182 | 0.0969 | 0.1030 | 0.1996 | 0.1448 | 0.0852 | |
Optimal Counts | 0 | 0 | 4 | 1 | 0 | 1 | 5 |
Prediction Step Size | 24 | 48 | 96 | 144 | 216 | 288 | 576 | 720 |
---|---|---|---|---|---|---|---|---|
Without | 0.0303 | 0.0559 | 0.0692 | 0.0683 | 0.0762 | 0.0896 | 0.0963 | 0.1326 |
Without | 0.0293 | 0.0460 | 0.0728 | 0.0766 | 0.1004 | 0.1021 | 0.0945 | 0.1108 |
Without | 0.0488 | 0.0619 | 0.0859 | 0.0925 | 0.0953 | 0.1101 | 0.1038 | 0.1425 |
SFFormer | 0.0261 | 0.0392 | 0.0629 | 0.0533 | 0.0631 | 0.0756 | 0.095 | 0.1086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, M.; Li, S.; Cai, Y.; Long, W.; Yang, B. Scale-Fusion Transformer: A Medium-to-Long-Term Forecasting Model for Parking Space Availability. Electronics 2025, 14, 3636. https://doi.org/10.3390/electronics14183636
Chen J, Wu M, Li S, Cai Y, Long W, Yang B. Scale-Fusion Transformer: A Medium-to-Long-Term Forecasting Model for Parking Space Availability. Electronics. 2025; 14(18):3636. https://doi.org/10.3390/electronics14183636
Chicago/Turabian StyleChen, Jie, Mengli Wu, Sheng Li, Yunyi Cai, Wangchen Long, and Bo Yang. 2025. "Scale-Fusion Transformer: A Medium-to-Long-Term Forecasting Model for Parking Space Availability" Electronics 14, no. 18: 3636. https://doi.org/10.3390/electronics14183636
APA StyleChen, J., Wu, M., Li, S., Cai, Y., Long, W., & Yang, B. (2025). Scale-Fusion Transformer: A Medium-to-Long-Term Forecasting Model for Parking Space Availability. Electronics, 14(18), 3636. https://doi.org/10.3390/electronics14183636