Residual Skewness Monitoring-Based Estimation Method for Laser-Induced Breakdown Spectroscopy
Abstract
1. Introduction
2. Algorithm Introduction
2.1. Problem Modeling
2.2. Variational Inference Solution and Parameter Optimization
Algorithm 1: SBL-BC for LIBS | |
1. | Input spectral data x, maximum iterations maxiter, and error tolerance ε. |
2. | Normalize x and save the normalization parameter scale_x. Initialize α, γ, ρ, and set the initial iteration variable t = 0. |
3. | Let s = 0. Compute U using Equation (31), and initialize μb using Equation (32). |
4. | Update μs using Equations (20)–(22), update α, γ using Equations (25), (27)–(29), and update μb using Equation (32). |
5. | Verify whether skew(r(t−1)) > 0 and skew(r(t)) < 0, are satisfied, if not, go to step 7. |
6. | Verify whether abs(r(t−1)) < abs(r(t)) is satisfied, if it holds, go to step 8, otherwise go to step 9. |
7. | Verify whether Equation (33) or t == maxiter is satisfied. If not, go to step 4; otherwise, go to step 9. |
8. | Output μs = scale_x ∗ μs(t−1), μb = scale_x ∗ μb(t−1). |
9. | Output μs = scale_x ∗ μs(t), μb = scale_x ∗ μb(t). |
3. Experimentation and Analysis
3.1. Simulation of Spectrum Generation
3.2. Real Spectrum Acquisition
3.3. Spectral Peak Fitting Error Experiment
3.4. Residual Skewness Experiment
3.5. Algorithm Comparison Experiment
3.6. Real Spectrum Test
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIBS | Laser-Induced Breakdown Spectroscopy |
SBL-BC | Sparse Bayesian Learning–Baseline Correction |
SNR | Signal-to-Noise Ratio |
NMSE | Normalized Mean Square Error |
References
- Myakalwar, A.K. LIBS as a Spectral Sensor for Monitoring Metallic Molten Phase in Metallurgical Applications—A Review. Minerals 2021, 11, 1073. [Google Scholar] [CrossRef]
- Pathak, A.K.; Kumar, R.; Singh, V.K.; Agrawal, R.; Rai, S.; Rai, A.K. Assessment of LIBS for Spectrochemical Analysis: A Review. Appl. Spectrosc. Rev. 2011, 47, 14–40. [Google Scholar] [CrossRef]
- Rehse, S.J. A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification. Spectrochim. Acta Part B At. Spectrosc. 2019, 154, 50–69. [Google Scholar] [CrossRef]
- Sezer, B.; Bilge, G.; Boyaci, I.H. Capabilities and limitations of LIBS in food analysis. TrAC Trends Anal. Chem. 2017, 97, 345–353. [Google Scholar] [CrossRef]
- Huang, X.H. Element Detection in Scrap Steel Using Portable LIBS and Sparrow Search Algorithm-Kernel Extreme Learning Machine(SSA-KELM). Spectrosc. Spectr. Anal. 2024, 44, 2412–2419. [Google Scholar]
- Yan, H.Y. Adaptive Baseline Correction Method for Laser-induced Breakdown Spectroscopy. Acta Photonica Sin. 2024, 53, 271–281. [Google Scholar]
- Bai, W.Y. Fine Classification Method of Stainless Steel Based on LIBS Technology. Laser Optoelectron. Prog. 2022, 59, 270–274. [Google Scholar]
- Tao, L. Using Laser Induced Breakdown Spectroscopy and Machine Learning to Identify Jiangxi Spring Tea Harvesting Periods. Laser Optoelectron. Prog. 2024, 61, 491–497. [Google Scholar]
- Yu, S. A New Approach for Spectra Baseline Correction Using Sparse Representation. In Proceedings of the IASTED International Conference, Phuket, Thailand, 10–12 April 2013. [Google Scholar]
- Ning, X.; Selesnick, I.W.; Duval, L. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemom. Intell. Lab. Syst. 2014, 139, 156–167. [Google Scholar] [CrossRef]
- Han, Q. Simultaneous spectrum fitting and baseline correction using sparse representation. Analyst 2017, 142, 2460–2468. [Google Scholar] [CrossRef]
- Li, H. Sparse Bayesian learning approach for baseline correction. Chemom. Intell. Lab. Syst. 2020, 204, 104088. [Google Scholar] [CrossRef]
- Eilers, P.H.; Boelens, H.F. Baseline correction with asymmetric least squares smoothing. Leiden Univ. Med. Cent. Rep. 2005, 1, 5. [Google Scholar]
- Zhang, Z.; Chen, S.; Liang, Y. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Baek, S. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 2015, 140, 250–267. [Google Scholar] [CrossRef]
- Zhang, F. Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method. Spectrosc. Lett. 2020, 53, 222–233. [Google Scholar] [CrossRef]
- Xie, S. Accuracy improvement of quantitative LIBS analysis using wavelet threshold de-noising. J. Anal. At. Spectrom. 2017, 32, 629–637. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Jaakkola, T.S.; Jordan, M.I. Bayesian parameter estimation via variational methods. Stat. Comput. 2000, 10, 25–37. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Jordan, M.I. An introduction to variational methods for graphical models. Mach. Learn. 1999, 37, 183–233. [Google Scholar] [CrossRef]
- Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877. [Google Scholar] [CrossRef]
- Murphy, K.P. Conjugate Bayesian analysis of the Gaussian distribution. arXiv 2022, arXiv:2212.13612. [Google Scholar]
- Krishnamoorthy, A.; Menon, D. Matrix inversion using Cholesky decomposition. In Proceedings of the 2013 IEEE Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 26–28 September 2013. [Google Scholar]
- Ma, S. A LIBS spectrum baseline correction method based on the non-parametric prior penalized least squares algorithm. Anal. Methods 2024, 16, 4360–4372. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.Y. Explosive Residue Identification Study by Remote LIBS Combined With GA-arPLS. Spectrosc. Spectr. Anal. 2024, 44, 3199–3205. [Google Scholar]
SNR | Indicator Parameters | SBL-BC -LIBS | SBL-BC (0.1) | SBL-BC (0.3) | SBL-BC (0.5) | SBL-BC (1.0) |
---|---|---|---|---|---|---|
5 dB | Speed/ms | 2.47 | 229.29 | 1410.47 | 1641.65 | 1833.95 |
Iterations | 12 | 100 | 51 | 89 | 100 | |
NMSE | 0.1062 | 0.1058 | 0.1374 | 0.1697 | 0.3269 | |
Sparsity | 0.4955 | 0.8025 | 0.8475 | 0.5790 | 0.6225 | |
10 dB | Speed/ms | 2.42 | 66.79 | 1368.40 | 1601.67 | 1948.39 |
Iterations | 12 | 38 | 44 | 89 | 100 | |
NMSE | 0.0330 | 0.0209 | 0.0521 | 0.1143 | 0.2894 | |
Sparsity | 0.4785 | 0.8880 | 0.7370 | 0.6290 | 0.6995 | |
20 dB | Speed/ms | 8.65 | 48.55 | 1433.54 | 1710.76 | 1937.75 |
Iterations | 30 | 30 | 41 | 90 | 100 | |
NMSE | 0.0089 | 0.0088 | 0.0406 | 0.0998 | 0.2775 | |
Sparsity | 0.5190 | 0.9240 | 0.8475 | 0.7905 | 0.7195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Shen, X.; Liu, T.; Wang, S.; Hang, Y.; Mo, J.; Shao, L.; Wang, R. Residual Skewness Monitoring-Based Estimation Method for Laser-Induced Breakdown Spectroscopy. Electronics 2025, 14, 3343. https://doi.org/10.3390/electronics14173343
Zhu B, Shen X, Liu T, Wang S, Hang Y, Mo J, Shao L, Wang R. Residual Skewness Monitoring-Based Estimation Method for Laser-Induced Breakdown Spectroscopy. Electronics. 2025; 14(17):3343. https://doi.org/10.3390/electronics14173343
Chicago/Turabian StyleZhu, Bin, Xiangcheng Shen, Tao Liu, Sirui Wang, Yuhua Hang, Jianhua Mo, Lei Shao, and Ruizhi Wang. 2025. "Residual Skewness Monitoring-Based Estimation Method for Laser-Induced Breakdown Spectroscopy" Electronics 14, no. 17: 3343. https://doi.org/10.3390/electronics14173343
APA StyleZhu, B., Shen, X., Liu, T., Wang, S., Hang, Y., Mo, J., Shao, L., & Wang, R. (2025). Residual Skewness Monitoring-Based Estimation Method for Laser-Induced Breakdown Spectroscopy. Electronics, 14(17), 3343. https://doi.org/10.3390/electronics14173343