Real-Time Concrete Workability Estimation in Transit via an IoT-Enabled Cyber-Physical System
Abstract
1. Introduction and Related Work
2. Methodology
2.1. Empirical Workability Estimation
2.2. Mathematical Modeling
2.3. CPS for In-Transit Workability Estimation
3. Implementation
4. Use Case
Description
- Drum rotation speed was maintained as steady throughout each transit, consistent with standard agitation protocols.
- No significant variation in concrete mix design was assumed during the study period.
- Based on expert feedback, manual workability measurement error was estimated at 2 cm.
- To facilitate interpolation of temperature and workability evolution, both parameters were linearly interpolated between start and end values, generating regular data points.
5. Results
5.1. Empirical Model Validation
5.2. CPS Decision Support in Operation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oti, J.; Adeleke, B.O.; Rathnayake, M.; Kinuthia, J.M.; Ekwulo, E. Strength and Durability Characterization of Structural Concrete Made of Recycled Plastic. Materials 2024, 17, 1841. [Google Scholar] [CrossRef]
- Hinge, P.; Shende, T.; Ralegaonkar, R.; Nandurkar, B.; Raut, S.; Kamath, M.; Tantri, A.; Naganna, S.R. An Assessment of Workability, Mechanical and Durability Properties of High-Strength Concrete Incorporating Nano-Silica and Recycled E-Waste Materials. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 65. [Google Scholar] [CrossRef]
- Safhi, A.E.M.; Dabiri, H.; Soliman, A.; Khayat, K.H. Prediction of Self-Consolidating Concrete Properties Using XGBoost Machine Learning Algorithm: Part 1—Workability. Constr. Build. Mater. 2023, 408, 133560. [Google Scholar] [CrossRef]
- Ojala, T.; Punkki, J. Estimating the Workability of Concrete with a Stereovision Camera during Mixing. Sensors 2024, 24, 4472. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zheng, Y.; Rong, Z.; Zhao, Z.; Yang, J.; Yang, B. Impact of Early-Age Vibration on the Permeability and Microstructure of Mature-Age Concrete. Constr. Build. Mater. 2024, 453, 139124. [Google Scholar] [CrossRef]
- Malekipour, M.; Moodi, F. A Novel Approach to Improve Quality of Delivered Concrete Using Slump Estimations of the Ready-Mixed Concrete (RMC) Truck Mixer. J. Build. Eng. 2021, 44, 103361. [Google Scholar] [CrossRef]
- Marchewka, A.; Ziolkowski, P.; García Galán, S. Real-Time Prediction of Early Concrete Compressive Strength Using AI and Hydration Monitoring. Sci. Rep. 2025, 15, 15463. [Google Scholar] [CrossRef]
- Salman, M.M.; Zghair, L.A.G.; Jumaa, N.H. The Interrelationship between the Methods Used to Determine the Workability of Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012022. [Google Scholar] [CrossRef]
- Wang, S.; Fu, J.; Zhang, C.; Yang, J. Chapter 9—Muck Conditioning for EPB Shield Tunnelling and Muck Recycling. In Shield Tunnel Engineering; Wang, S., Fu, J., Zhang, C., Yang, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 433–490. ISBN 978-0-12-823992-6. [Google Scholar]
- White, C.; Lees, J.M. The Concrete Slump Test—A Rheometer by Definition? Constr. Build. Mater. 2025, 462, 139839. [Google Scholar] [CrossRef]
- Tuan, N.M.; Hau, Q.V.; Chin, S.; Park, S. In-Situ Concrete Slump Test Incorporating Deep Learning and Stereo Vision. Autom. Constr. 2021, 121, 103432. [Google Scholar] [CrossRef]
- Pereira, J.B.; Maciel, G.F. Automated Slump Test: An Effective Alternative in Predicting Rheological Properties and an Efficient Tool for Providing the Quality Control of Materials. Measurement 2021, 178, 109384. [Google Scholar] [CrossRef]
- Safayenikoo, H.; Khajehzadeh, M.; Nehdi, M.L. Novel Evolutionary-Optimized Neural Network for Predicting Fresh Concrete Slump. Sustainability 2022, 14, 4934. [Google Scholar] [CrossRef]
- Vargas, J.F.; Oviedo, A.I.; Ortega, N.A.; Orozco, E.; Gómez, A.; Londoño, J.M. Machine-Learning-Based Predictive Models for Compressive Strength, Flexural Strength, and Slump of Concrete. Appl. Sci. 2024, 14, 4426. [Google Scholar] [CrossRef]
- Kockal, N.U.; Turker, F. Effect of Environmental Conditions on the Properties of Concretes with Different Cement Types. Constr. Build. Mater. 2007, 21, 634–645. [Google Scholar] [CrossRef]
- Rajakarunakaran, S.A.; Lourdu, A.R.; Muthusamy, S.; Panchal, H.; Jawad Alrubaie, A.; Musa Jaber, M.; Ali, M.H.; Tlili, I.; Maseleno, A.; Majdi, A.; et al. Prediction of Strength and Analysis in Self-Compacting Concrete Using Machine Learning Based Regression Techniques. Adv. Eng. Softw. 2022, 173, 103267. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Hilloulin, B.; Villagran Zaccardi, Y.; Marani, A.; Nehdi, M.L.; Hanif, M.U.; Kamath, M.; Nunes, S.; Von Greve-Dierfeld, S.; Kanellopoulos, A. Machine Learning in Concrete Durability: Challenges and Pathways Identified by RILEM TC 315-DCS towards Enhanced Predictive Models. Mater Struct 2025, 58, 145. [Google Scholar] [CrossRef]
- Yang, L.; An, X.; Du, S. Estimating Workability of Concrete with Different Strength Grades Based on Deep Learning. Measurement 2021, 186, 110073. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M.; Najeh, T.; Gamil, Y. Computational Prediction of Workability and Mechanical Properties of Bentonite Plastic Concrete Using Multi-Expression Programming. Sci. Rep. 2024, 14, 6105. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Bennamoun, M.; Chang, X.; Sirivivatnanon, V.; Nezhad, A. Spatial-Temporal Analysis for Automated Concrete Workability Estimation. arXiv 2022, arXiv:2207.11635. [Google Scholar] [CrossRef]
- Qorllari, A.; Bier, T.A. Optimization of Workability and Compressive Strength of Self-Compacting Mortar Using Screening Design. CivilEng 2022, 3, 998–1012. [Google Scholar] [CrossRef]
- Kampli, G.; Chickerur, S.; Chitawadagi, M. IoT System Implementation for Real-Time Concrete Strength Prediction: Experimental Design, Variance Evaluation, Cost Analysis, and Implementation Ease. Innov. Infrastruct. Solut. 2024, 9, 260. [Google Scholar] [CrossRef]
- Kishore, S.; Kumar, A. Real-Time Monitoring and Prediction of Compressive Strength of Mortar and Concrete. Mater. Res. Express 2025, 12, 025701. [Google Scholar] [CrossRef]
- Selmy, H.A.; Mohamed, H.K.; Medhat, W. A Predictive Analytics Framework for Sensor Data Using Time Series and Deep Learning Techniques. Neural Comput. Appl. 2024, 36, 6119–6132. [Google Scholar] [CrossRef]
- Zaini, N.; Ean, L.W.; Ahmed, A.N.; Malek, M.A. A Systematic Literature Review of Deep Learning Neural Network for Time Series Air Quality Forecasting. Env. Sci. Pollut. Res. 2022, 29, 4958–4990. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Krebs, P. Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water 2022, 14, 993. [Google Scholar] [CrossRef]
- Du, J.; Liu, Z.; Dong, W.; Zhang, W.; Miao, Z. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles. Sensors 2024, 24, 5631. [Google Scholar] [CrossRef]
- Chandra, R.; Goyal, S.; Gupta, R. Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction. IEEE Access 2021, 9, 83105–83123. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Zhao, B.; Xing, H.; Wang, X.; Song, F.; Xiao, Z. Rethinking Attention Mechanism in Time Series Classification. Inf. Sci. 2023, 627, 97–114. [Google Scholar] [CrossRef]
- Nikolakis, N.; Maratos, V.; Makris, S. A Cyber Physical System (CPS) Approach for Safe Human-Robot Collaboration in a Shared Workplace. Robot. Comput.-Integr. Manuf. 2019, 56, 233–243. [Google Scholar] [CrossRef]
- Catti, P.; Nikolakis, N.; Sipsas, K.; Picco, N.; Alexopoulos, K. A Hybrid Digital Twin Approach for Proactive Quality Control in Manufacturing. Procedia Comput. Sci. 2024, 232, 3083–3091. [Google Scholar] [CrossRef]
- Nikolakis, N.; Alexopoulos, K.; Xanthakis, E.; Chryssolouris, G. The Digital Twin Implementation for Linking the Virtual Representation of Human-Based Production Tasks to Their Physical Counterpart in the Factory-Floor. Int. J. Comput. Integr. Manuf. 2019, 32, 1–12. [Google Scholar] [CrossRef]
- Nikolakis, N.; Kantaris, G.; Bourmpouchakis, K.; Alexopoulos, K. A Cyber-Physical System Approach for Enabling Ventilation on-Demand in an Underground Mining Site. Procedia CIRP 2021, 97, 487–490. [Google Scholar] [CrossRef]
- Weerapura, V.; Sugathadasa, R.; De Silva, M.M.; Nielsen, I.; Thibbotuwawa, A. Feasibility of Digital Twins to Manage the Operational Risks in the Production of a Ready-Mix Concrete Plant. Buildings 2023, 13, 447. [Google Scholar] [CrossRef]
- Moshood, T.D.; Rotimi, J.O.; Shahzad, W.; Bamgbade, J.A. Infrastructure Digital Twin Technology: A New Paradigm for Future Construction Industry. Technol. Soc. 2024, 77, 102519. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Maxi, M.; Elmousalami, H. AI-Powered Digital Twins and Internet of Things for Smart Cities and Sustainable Building Environment. Appl. Sci. 2024, 14, 12056. [Google Scholar] [CrossRef]
- Torzoni, M.; Tezzele, M.; Mariani, S.; Manzoni, A.; Willcox, K.E. A Digital Twin Framework for Civil Engineering Structures. Comput. Methods Appl. Mech. Eng. 2024, 418, 116584. [Google Scholar] [CrossRef]
- ASTM C143/C143M-20; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM: West Conshohocken, PA, USA, 2020. Available online: https://store.astm.org/c0143_c0143m-20.html (accessed on 9 July 2025).
- BS EN 12350-2:2019-TC; Testing Fresh Concrete—Slump Test. BSI Knowledge: London, UK, 2019. Available online: https://knowledge.bsigroup.com/products/testing-fresh-concrete-slump-test-2 (accessed on 9 July 2025).
- BS EN 206:2013+A2:2021; Concrete. Specification, Performance, Production and Conformity. BSI Knowledge: London, UK, 2021. Available online: https://knowledge.bsigroup.com/products/concrete-specification-performance-production-and-conformity-2 (accessed on 9 July 2025).
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and Mechanical Properties of Alkali-Activated Fly Ash-Slag Concrete Cured at Ambient Temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Ferrari, C.; Beccati, N.; Magri, L. Numerical Mixing Index: Definition and Application on Concrete Mixer. Fluids 2025, 10, 72. [Google Scholar] [CrossRef]
- Amziane, S.; Ferraris, C.F.; Koehler, E.P. Measurement of Workability of Fresh Concrete Using a Mixing Truck. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 55. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Zhu, T.; An, Q. Study on the Dynamic Performance of Concrete Mixer’s Mixing Drum. Mech. Sci. 2017, 8, 165–178. [Google Scholar] [CrossRef]
- Yan, W.; Cui, W.; Qi, L. DEM Study on the Response of Fresh Concrete under Vibration. Granul. Matter 2022, 24, 37. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef] [PubMed]
- Botchkarev, A. Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio. SSRN J. 2018. [Google Scholar] [CrossRef]
- Berman, J.J. Chapter 4—Understanding Your Data. In Data Simplification; Berman, J.J., Ed.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 135–187. ISBN 978-0-12-803781-2. [Google Scholar]
- Bartos, P.J.; Sonebi, M.; Tamimi, A.K. Workability and Rheology of Fresh Concrete: Compendium of Tests; RILEM Publications: Bagneux, France, 2002; ISBN 2-912143-32-2. [Google Scholar]
- SEMATECH E-Handbook of Statistical Methods. Available online: https://www.itl.nist.gov/div898/handbook/ (accessed on 1 August 2025).
- Miller, D.; Ho, N.-M.; Talebian, N.; Javanbakht, Z. Real-Time Monitoring of Early-Age Compressive Strength of Concrete Using an IoT-Enabled Monitoring System: An Investigative Study. Innov. Infrastruct. Solut. 2023, 8, 75. [Google Scholar] [CrossRef]
Workability Measurement (cm) | Workability Classification |
---|---|
10–20 | S1-a |
21–30 | S1-b |
31–40 | S1-c |
40–90 | S2 |
90–150 | S3 |
Relative to Initial Class Detected Event | CPS Recommendation | Reasoning |
---|---|---|
No change in class is estimated | Resume current operations | Since no class change is detected, no need to adjust mixer parameters |
One class drop | Increase concrete mixer rotations | Increased rotation (higher agitation), slows down concrete stiffening |
Severe class drop (higher than two class drop) | Terminate delivery | Severe class drops signals errors during initial concrete mixing |
LSTM Layer 1 Num. of Units | LSTM Layer 2 Num. of Units | Learning Rate | Weight Decay | Dropout | Batch Size | Loss Function |
---|---|---|---|---|---|---|
128 | 64 | 3 × 10−3 | 10−4 | 0.3 | 32 | MSE |
Minimum Trip Duration (min.) | Maximum Trip Duration (min.) | Minimum Ambient Temperature (°C) | Maximum Ambient Temperature (°C) |
11 | 81.5 | 9.7 | 24.7 |
Mean Drum Rotation During Transit (RPM) | Minimum Drum Angle (°) | Maximum Drum Angle (°) | |
2 | 15 | 20 |
Sensors | Frequency | Unit |
---|---|---|
Accelerometer | ~3500 Hz | g (m/s2) |
Gyroscope | ~7000 | Degrees per second (°/s) |
Pressure | ~7000 | Bar |
Temperature | Measured once at the start and end of the delivery | Celsius |
c0 | c1 | c2 | c3 | c4 | |||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max |
24.6 | 25.8 | −0.0043 | −0.0022 | −0.15 | −0.09 | 0.04 | 0.06 | −0.69 | −0.8 |
RMSE | MSE | |
---|---|---|
2.66 | 2.32 | 0.24 |
Features | Correlation Values | Features | Correlation Values | Features | Correlation Values |
---|---|---|---|---|---|
Temperature start 1 | −0.50 | Pressure skewness 1 | 0.42 | Acceleration wavelet max | −0.18 |
Temperature end 1 | −0.54 | Pressure kurtosis 1 | −0.51 | Gyro norm mean 1 | 0.45 |
Pressure FFT std | −0.11 | Acceleration norm mean 1 | −0.52 | Gyro norm std | 0.14 |
Pressure FFT mean | −0.02 | Acceleration norm std | −0.19 | Gyro norm min | 0.15 |
Pressure FFT min | −0.03 | Acceleration norm min | −0.08 | Gyro norm max | −0.04 |
Pressure FFT max | 0.06 | Acceleration norm max | −0.22 | Gyro norm skewness 1 | −0.45 |
Pressure wavelet mean | −0.18 | Acceleration norm skewness | −0.05 | Gyro norm kurtosis 1 | −0.54 |
Pressure wavelet max | −0.18 | Acceleration norm kurtosis | −0.10 | Gyro FFT mean | −0.26 |
Pressure mean 1 | −0.43 | Acceleration FFT mean | −0.21 | Gyro FFT std | 0.16 |
Pressure std | 0.19 | Acceleration FFT std | 0.05 | Gyro FFT max | 0.13 |
Pressure min | −0.36 | Acceleration FFT max | 0.12 | Gyro wavelet mean | −0.09 |
Pressure max | −0.22 | Acceleration wavelet mean 1 | −0.45 | Gyro wavelet max | −0.18 |
Pressure Min (Bar) | Pressure Skewness (Bar) | Pressure Kurtosis (Bar) | Acc. Norm Mean (m/s2) | Acc. Wavelet Mean (m/s2) | Gyro. Norm Mean (Dps°/s) | Gyro. Norm Skewness (Dps°/s) | Gyro. Norm Kurtosis (Dps°/s) | Starting Temperature (Celsius) | Workability (mm) |
---|---|---|---|---|---|---|---|---|---|
49.8049 | 7.4053 | 437.2824 | 1.01519 | 956.6658 | 22.4718 | 0.1858 | 1.4406 | 10.7294 | 23.82 |
49.8024 | 10.4955 | 877.7744 | 1.0156 | 1784.5491 | 22.5144 | 0.2033 | 1.2606 | 10.7588 | 23.77 |
49.8016 | 12.8636 | 1318.2666 | 1.0156 | 2563.1054 | 22.5346 | 0.2113 | 1.4163 | 10.7882 | 23.34 |
49.8012 | 14.8590 | 1758.7588 | 1.0162 | 3389.1709 | 22.5438 | 0.2353 | 1.4987 | 10.8176 | 23.31 |
49.8009 | 16.6165 | 2199.2511 | 1.0163 | 4195.8640 | 22.5477 | 0.2333 | 1.4993 | 10.8470 | 23.23 |
Deep Learning Models | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
Single-layer unidirectional LSTM | 9.387 | 3.064 | 2.281 | 0.256 |
Multi-layer LSTM | 6.783 | 2.604 | 1.964 | 0.494 |
Hybrid CNN-LSTM | 5.509 | 2.347 | 1.789 | 0.560 |
Bi-LSTM without an attention mechanism | 4.155 | 2.038 | 1.709 | 0.669 |
Bi-LSTM with an attention mechanism | 0.971 | 0.985 | 0.739 | 0.897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catti, P.; Nikolakis, N.; Ntoulmperis, M.; Lakkas-Pyknis, V.; Alexopoulos, K. Real-Time Concrete Workability Estimation in Transit via an IoT-Enabled Cyber-Physical System. Electronics 2025, 14, 3289. https://doi.org/10.3390/electronics14163289
Catti P, Nikolakis N, Ntoulmperis M, Lakkas-Pyknis V, Alexopoulos K. Real-Time Concrete Workability Estimation in Transit via an IoT-Enabled Cyber-Physical System. Electronics. 2025; 14(16):3289. https://doi.org/10.3390/electronics14163289
Chicago/Turabian StyleCatti, Paolo, Nikolaos Nikolakis, Michalis Ntoulmperis, Vaggelis Lakkas-Pyknis, and Kosmas Alexopoulos. 2025. "Real-Time Concrete Workability Estimation in Transit via an IoT-Enabled Cyber-Physical System" Electronics 14, no. 16: 3289. https://doi.org/10.3390/electronics14163289
APA StyleCatti, P., Nikolakis, N., Ntoulmperis, M., Lakkas-Pyknis, V., & Alexopoulos, K. (2025). Real-Time Concrete Workability Estimation in Transit via an IoT-Enabled Cyber-Physical System. Electronics, 14(16), 3289. https://doi.org/10.3390/electronics14163289