Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Fish Anomaly Analysis
1.3. Our Methods and Contributions
- The FITS includes three key innovations to enhance multi-fish tracking accuracy in realistic aquarium environments. Firstly, it employs a mirror removal algorithm by considering the relationship of coordination among objects and effectively deleting mirror objects that cause errors in fish tracking. Secondly, it replaces the traditional NMS with DIoU-NMS. This method considers both the overlap ratio and the distance between objects, which effectively mitigates occlusion issues. Thirdly, the tracking algorithm is improved by incorporating a NSA Kalman Filter, which better predicts a fish’s position in the next frame by adapting to its movement speed and sudden turns. These innovations enhance the FITS’s ability to accurately track multiple fish in realistic aquarium environments.
- The FITS was evaluated in three different ornamental fish tank environments: basic, decorated, and water ripple. Across these diverse conditions, the FITS consistently demonstrated remarkable tracking accuracy. It also significantly reduced ID switches, an error where the tracker assigns the same ID to the wrong object. In the basic environment, compared with YOLOv5, the FITS increased Multiple Object Tracking Accuracy (MOTA) by 13.3% and reduced ID switches by 224. In the decorated environment, the FITS increased MOTA by 5.5% and decreased ID switches by 174. In the water ripple environment, the FITS increased MOTA by 3.8% and reduced ID switches by 249. These results highlight the FITS’s robustness and accuracy in diverse conditions.
2. Related Work
2.1. Fish Appearance Identification Methods
2.2. Fish Tracking Methods
3. System Design and Implementation
3.1. Overview and System Architecture
3.2. Detection Model Selection
3.3. Detection Enhancement
3.4. Mirror Object Removal
3.5. Fish Tracking
4. Experiment
4.1. Datasets and Experiment Design
4.2. Evaluation Metrics
4.3. Performance in Basic Environment
4.4. Performance in Decorative Environment
4.5. Performance in Rippling Environment
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asia Pacific Ornamental Fish Market Size. Available online: https://www.grandviewresearch.com/industry-analysis/asia-pacific-ornamental-fish-market-report (accessed on 20 January 2024).
- Mecha, N.J.M.F.; Gonzales-Plasus, M.M. The Common Diseases of Freshwater Ornamental Fishes and the Treatments Applied by Local Fish Owners in Puerto Princesa City, Palawan, Philippines. J. Fish. 2023, 11, 111205. Available online: https://journal.bdfish.org/index.php/fisheries/article/view/485 (accessed on 20 January 2024).
- Anjur, N.; Sabran, S.F.; Daud, H.M.; Othman, N.Z. An Update on the Ornamental Fish Industry in Malaysia: Aeromonas Hydrophila-Associated Disease and Its Treatment Control. Vet. World 2021, 14, 1143–1152. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8243671/ (accessed on 10 August 2024). [CrossRef]
- Shreesha, S.; Manohara Pai, M.M.; Ujjwal, V.; Radhika, M.P. Computer Vision Based Fish Tracking And Behaviour Detection System. In Proceedings of the 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Udupi, India, 30–31 October 2020; pp. 252–257. [Google Scholar] [CrossRef]
- Gupta, A.; Bringsdal, E.; Knausgård, K.M.; Goodwin, M. Accurate Wound and Lice Detection in Atlantic Salmon Fish Using a Convolutional Neural Network. Fishes 2022, 7, 345. [Google Scholar] [CrossRef]
- Waleed, A.; Medhat, H.; Esmail, M.; Osama, K.; Samy, R.; Ghanim, T.M. Automatic Recognition of Fish Diseases in Fish Farms. In Proceedings of the 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 17 December 2019; pp. 201–206. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, J.; Chen, A.; Wan, R. Detection and Identification of Fish Skin Health Status Referring to Four Common Diseases Based on Improved YOLOv4 Model. Fishes 2023, 8, 186. [Google Scholar] [CrossRef]
- Sikder, J.; Sarek, K.; Das, U. Fish Disease Detection System: A Case Study of Freshwater Fishes of Bangladesh. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 861–865. [Google Scholar] [CrossRef]
- Hou, Y.; Zou, X.; Tang, W.; Jiang, W.; Zhu, J.; Deng, C.; Zhang, Y. Precise Capture of Fish Movement Trajectories in Complex Environments via Ultrasonic Signal Tag Tracking. Fish. Res. 2019, 219, 105307. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Cisar, P. Automated Multiple Fish Tracking in Three-Dimension Using a Structured Light Sensor. Comput. Electron. Agric. 2016, 121, 215–221. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, Z.; Ge, F.; Han, Z.; Li, J. Analysis of Behavior Trajectory Based on Deep Learning in Ammonia Environment for Fish. Sensors 2020, 20, 4425. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, S.; Gao, Q. An Algorithm for Tracking Multiple Fish Based on Biological Water Quality Monitoring. IEEE Access 2019, 7, 15018–15026. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Qi, Y.; Liu, H.; Li, Z. Dynamic Fry Counting Based on Multi-Object Tracking and One-Stage Detection. Comput. Electron. Agric. 2023, 209, 107871. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; TaoXie; Fang, J.; Imyhxy; et al. Ultralytics/Yolov5: V7.0—Yolov5 Sota Realtime Instance Segmentation. Available online: https://ui.adsabs.harvard.edu/abs/2022zndo...7347926J/abstract (accessed on 10 September 2023).
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. arXiv 2017, arXiv:1703.07402. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, D.; Zhang, Y.; Zhou, C.; Chen, W. Real-Time Nondestructive Fish Behavior Detecting in Mixed Polyculture System Using Deep-Learning and Low-Cost Devices. Expert Syst. Appl. 2021, 178, 115051. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Lu, J.; Wang, H.; Feng, Y.; Shi, C.; Li, D.; Zhao, R. A Lightweight Dead Fish Detection Method Based on Deformable Convolution and YOLOV4. Comput. Electron. Agric. 2022, 198, 107098. [Google Scholar] [CrossRef]
- Liang, J.-M.; Mishra, S.; Cheng, Y.-L. Applying Image Recognition and Tracking Methods for Fish Physiology Detection Based on a Visual Sensor. Sensors 2022, 22, 5455. [Google Scholar] [CrossRef]
- Cai, Y.; Yao, Z.; Jiang, H.; Qin, W.; Xiao, J.; Huang, X.; Pan, J.; Feng, H. Rapid Detection of Fish with SVC Symptoms Based on Machine Vision Combined with a NAM-YOLO v7 Hybrid Model. Aquaculture 2024, 582, 740558. [Google Scholar] [CrossRef]
- Zhong, J.; Qian, H.; Wang, H.; Wang, W.; Zhou, Y. Improved real-time object detection method based on YOLOv8: A refined approach. J. Real-Time Image Proc. 2025, 22, 4. [Google Scholar] [CrossRef]
- Deng, L.; Luo, S.; He, C.; Xiao, H.; Wu, H. Underwater small and occlusion object detection with feature fusion and global context decoupling head-based YOLO. Multimed. Syst. 2024, 30, 208. [Google Scholar] [CrossRef]
- Qian, Z.-M.; Wang, S.H.; Cheng, X.E.; Chen, Y.Q. An Effective and Robust Method for Tracking Multiple Fish in Video Image Based on Fish Head Detection. BMC Bioinform. 2016, 17, 251. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Zhao, J.W.; Chen, Y.Q. Robust Tracking of Fish Schools Using CNN for Head Identification. Multimed. Tools Appl. 2017, 76, 23679–23697. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-Time Detection and Tracking of Fish Abnormal Behavior Based on Improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [Google Scholar] [CrossRef]
- Mei, Y.; Yan, N.; Qin, H.; Yang, T.; Chen, Y. SiamFCA: A New Fish Single Object Tracking Method Based on Siamese Network with Coordinate Attention in Aquaculture. Comput. Electron. Agric. 2024, 216, 108542. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Li, Z. CMFTNet: Multiple Fish Tracking Based on Counterpoised JointNet. Comput. Electron. Agric. 2022, 198, 107018. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, A.; Zhu, Y.; Yan, Q.; Sun, J.; Zhang, Y. Multiple Object Tracking based on Occlusion-Aware Embedding Consistency Learning. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024. [Google Scholar] [CrossRef]
- Zhai, X.; Wei, H.; Wu, H.; Zhao, Q.; Huang, M. Multi-Target Tracking Algorithm in Aquaculture Monitoring Based on Deep Learning. Ocean. Eng. 2023, 289, 116005. [Google Scholar] [CrossRef]
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Ansel, J.; Yang, E.; He, H.; Gimelshein, N.; Jain, A.; Voznesensky, M.; Bao, B.; Bell, P.; Berard, D.; Burovski, E.; et al. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation [Conference paper]. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’24), San Diego, CA, USA, 27 April–1 May 2024; Volume 2. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. arXiv 2019, arXiv:1911.08287. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar] [CrossRef]
- Du, Y.; Wan, J.; Zhao, Y.; Zhang, B.; Tong, Z.; Dong, J. GIAOTracker: A Comprehensive Framework for MCMOT with Global Information and Optimizing Strategies in VisDrone 2021. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; Volume 178, pp. 2809–2819. [Google Scholar] [CrossRef]
- Wojke, N.; Bewley, A.; Paulus, D. DeepSORT. 2017. Available online: https://github.com/nwojke/deep_sort (accessed on 22 May 2024).
- Tzutalin. LabelImg. Free Software: MIT License. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 10 September 2023).
- Dendorfer, P.; Osep, A.; Milan, A.; Schindler, K.; Cremers, D.; Reid, I.; Roth, S.; Leal-Taixé, L. MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. Int. J. Comput. Vis. 2020, 1–37. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-object Tracking by Associating Every Detection Box. In Computer Vision—ECCV 2022, Proceedings of 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
Specific Challenges Addressed | Experimental Design | ||||||
---|---|---|---|---|---|---|---|
Reference/ Year | Tracking Method | Water Ripple | Water Bubble | Occlusion | Mirroring | Environment | Tracking Evaluation Indicators |
Qian, Z.-M. et al. [22]/ 2016 | SDE | ✕ | ✕ | ✓ | ✕ | C | MTT, PTT, TIS |
Wang, S.-H. et al. [23]/ 2017 | SDE | ✕ | ✕ | ✓ | ✕ | C | Precision, Recall, F1, MT, ML, Frag, IDS |
Li, W. et al. [26]/ 2022 | JDE | ✓ | ✓ | ✓ | ✕ | B | IDF1, IDP, IDR, MOTA, Rcll, AP, IDsw |
Wang, H. et al. [24]/ 2022 | SDE | ✕ | ✕ | ✓ | ✕ | B | AUC, Precision |
Zhai, X. et al. [28]/ 2023 | SDE | ✕ | ✕ | ✕ | ✕ | A | MOTA, MOTP, IDS, FN, FP |
Mei, Y. et al. [25]/ 2024 | SDE | ✕ | ✕ | ✓ | ✕ | B | Precision, Success |
FITS | SDE | ✓ | ✓ | ✓ | ✓ | C | MOTA, HOTA, IDF1, MOTP, MODA, DetA, IDsw, MT |
Algorithm | Class | Epoch | Images | Labels | Precision | Recall | mAP@.5 | mAP@.5:.95 |
---|---|---|---|---|---|---|---|---|
YOLOv5 | ALL | 100 | 529 | 4761 | 0.979 | 0.947 | 0.981 | 0.672 |
YOLOv7 | ALL | 300 | 529 | 4761 | 0.891 | 0.848 | 0.895 | 0.558 |
Metric | Formula | Representation | Category |
---|---|---|---|
Precision | ↑ | Detection | |
Recall | ↑ | Detection | |
↑ | Detection | ||
M | ↓ | Detection | |
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↑ | Tracking | ||
↓ | Tracking |
Notations | Definitions |
---|---|
Number of correctly identified fish as fish | |
Number of instances where another object is incorrectly identified as a fish | |
Number of instances where an actual fish is missed by the model | |
Number of mirrored fish identified as fish in the k-th frame | |
Number of object identity switches in the k-th frame | |
Total number of actual fish in the k-th frame | |
The set c where the predicted track ID matches the actual track ID | |
The set c where the predicted track ID does not corresponds to any actual ID | |
The set c where the predicted track ID is incorrect | |
Number of correctly assigned identities | |
Number of incorrectly assigned identities | |
Number of unassigned identities | |
Bounding box of target i overlaps with the ground truth in the k-th frame | |
Number of matches in the k-th frame | |
Number of more than 80% of the trajectory is tracked |
Algorithms | Precision | Recall | - | |
---|---|---|---|---|
YOLOv7 [37] | 0.811 | 0.949 | 0.875 | 5927 (+2.2%) |
YOLOv5s [14] (Baseline) | 0.736 | 0.934 | 0.823 | 6062 |
YOLOv5s + DIoU-NMS | 0.736 | 0.942 | 0.826 | 6062 (0%) |
YOLOv5s + Mirror | 0.901 | 0.927 | 0.914 | 1435 (−76.3%) |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 0.904 | 0.927 | 0.915 | 1388 (−77.1%) |
Algorithms | Detector | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|
DeepSORT [15] | YOLOv7 [37] | 23.7 | 16.8 | 15.1 | 71.2 |
YOLOv5s [14] (Baseline) | 58.7 | 19.5 | 17.5 | 72.8 | |
YOLOv5s + DIoU-NMS | 59.8 | 21.5 | 20.7 | 72.8 | |
YOLOv5s + Mirror | 65.5 | 19.2 | 18.4 | 72.8 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 67.8 | 22.3 | 23.7 | 73.2 | |
NSA-DeepSORT | YOLOv7 [37] | 28.4 | 19.8 | 17.6 | 71.5 |
YOLOv5s [14] | 63.4 | 26.1 | 25.1 | 73.3 | |
YOLOv5s + DIoU-NMS | 63.6 | 26.2 | 24.8 | 73.3 | |
YOLOv5s + Mirror | 68.2 | 26.2 | 26.8 | 73.3 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 72.0 (+13.3) | 29.5 (+10.0) | 32.0 (+14.5) | 73.9 (+1.1) | |
Algorithms | Detector | (%) | (%) | ↓ | |
DeepSORT [15] | YOLOv7 [37] | 26.9 | 41.0 | 533 | 8 |
YOLOv5s [14] (Baseline) | 61.7 | 52.5 | 519 | 9 | |
YOLOv5s + DIoU-NMS | 60.9 | 52.2 | 513 | 8 | |
YOLOv5s + Mirror | 68.7 | 54.8 | 506 | 8 | |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 70.4 | 55.8 | 452 | 8 | |
NSA-DeepSORT | YOLOv7 [37] | 30.8 | 42.3 | 411 | 8 |
YOLOv5s [14] | 65.3 | 54.6 | 337 | 9 | |
YOLOv5s + DIoU-NMS | 65.6 | 54.6 | 330 | 9 | |
YOLOv5s + Mirror | 67.0 | 55.2 | 318 | 9 | |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 73.7 (+12.0) | 57.6 (+5.1) | 295 (−224) | 9 |
Algorithms | Precision | Recall | - | |
---|---|---|---|---|
YOLOv7 [37] | 0.848 | 0.683 | 0.757 | 4012 (+30.0%) |
YOLOv5s [14] (Baseline) | 0.830 | 0.951 | 0.886 | 3086 |
YOLOv5s + DIoU-NMS | 0.830 | 0.953 | 0.887 | 3086 (0%) |
YOLOv5s + Mirror | 0.914 | 0.899 | 0.904 | 1224 (−60.3%) |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 0.918 | 0.901 | 0.909 | 1159 (−62.4%) |
Algorithms | Detector | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|
DeepSORT [15] | YOLOv7 [37] | 22.3 | 13.5 | 12.4 | 70.8 |
YOLOv5s [14] (Baseline) | 55.0 | 15.5 | 14.3 | 70.4 | |
YOLOv5s + DIoU-NMS | 55.9 | 15.9 | 15.5 | 70.4 | |
YOLOv5s + Mirror | 56.4 | 16.2 | 16.1 | 70.4 | |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 57.6 | 16.3 | 16.2 | 70.7 | |
NSA-DeepSORT | YOLOv7 [37] | 25.7 | 15.7 | 14.1 | 71.0 |
YOLOv5s [14] | 59.8 | 20.7 | 23.0 | 70.8 | |
YOLOv5s + DIoU-NMS | 60.2 | 19.5 | 20.2 | 70.7 | |
YOLOv5s + Mirror | 60.4 | 19.0 | 19.6 | 70.8 | |
YOLOv5s + DIoU-NMS + Mirror(Ours) | 60.5 (+5.5) | 21.0 (+5.5) | 22.6 (+8.3) | 70.7 (+0.3) | |
Algorithms | Detector | (%) | (%) | ↓ | |
DeepSORT [15] | YOLOv7 [37] | 25.7 | 39.0 | 573 | 5 |
YOLOv5s [14] (Baseline) | 58.6 | 49.2 | 584 | 6 | |
YOLOv5s + DIoU-NMS | 58.6 | 49.1 | 562 | 6 | |
YOLOv5s + Mirror | 60.3 | 49.3 | 590 | 5 | |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 61.4 | 50.1 | 563 | 5 | |
NSA-DeepSORT | YOLOv7 [37] | 28.5 | 40.0 | 468 | 5 |
YOLOv5s [14] | 62.4 | 51.1 | 441 | 6 | |
YOLOv5s + DIoU-NMS | 62.1 | 50.9 | 434 | 6 | |
YOLOv5s + Mirror | 62.9 | 51.4 | 425 | 6 | |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 63.1 (+4.5) | 51.2 (+2.0) | 410 (−174) | 6 |
Algorithms | Precision | Recall | - | |
---|---|---|---|---|
YOLOv7 [37] | 0.851 | 0.687 | 0.760 | 3651 (+337.2%) |
YOLOv5s [14] (Baseline) | 0.948 | 0.945 | 0.946 | 835 |
YOLOv5s + DIoU-NMS | 0.948 | 0.947 | 0.947 | 835 (0%) |
YOLOv5s + Mirror | 0.960 | 0.923 | 0.941 | 597 (−28.5%) |
YOLOv5s + DIoU-NMS + Mirror (Ours) | 0.968 | 0.927 | 0.947 | 517 (−38.1%) |
Algorithms | Detector | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|
DeepSORT [15] | YOLOv7 [37] | 38.3 | 13.0 | 11.2 | 70.9 |
YOLOv5s [14] (Baseline) | 63.1 | 16.9 | 17.8 | 71.2 | |
YOLOv5s + DIoU-NMS | 63.2 | 16.3 | 17.9 | 71.2 | |
YOLOv5s + Mirror | 63.3 | 19.2 | 18.4 | 72.2 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 64.0 | 19.3 | 19.1 | 71.2 | |
NSA-DeepSORT | YOLOv7 [37] | 42.9 | 16.4 | 14.7 | 71.1 |
YOLOv5s [14] | 65.3 | 19.9 | 20.0 | 71.6 | |
YOLOv5s + DIoU-NMS | 65.4 | 19.9 | 20.2 | 71.5 | |
YOLOv5s + Mirror | 66.5 | 21.0 | 20.8 | 70.2 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 66.9 (+3.8) | 21.4 (+4.5) | 21.0 (+3.2) | 71.6 (+0.4) | |
Algorithms | Detector | (%) | (%) | ↓ | |
DeepSORT [15] | YOLOv7 [37] | 44.4 | 43.8 | 1010 | 5 |
YOLOv5s [14] (Baseline) | 67.8 | 53.1 | 787 | 5 | |
YOLOv5s + DIoU-NMS | 67.8 | 52.5 | 766 | 5 | |
YOLOv5s + Mirror | 68.7 | 54.8 | 756 | 5 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 68.3 | 54.9 | 717 | 5 | |
NSA-DeepSORT | YOLOv7 [37] | 48.2 | 45.3 | 877 | 6 |
YOLOv5s [14] | 69.2 | 53.8 | 651 | 6 | |
YOLOv5s + DIoU-NMS | 69.6 | 53.4 | 689 | 6 | |
YOLOv5s + Mirror | 70.1 | 54.3 | 598 | 6 | |
YOLOv5s + DIoU-NMS+ Mirror (Ours) | 71.6 (+3.8) | 54.4 (+1.3) | 538 (−249) | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.-D.; Chu, E.T.-H.; Lee, C.-R.; Su, J.-H. Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques. Electronics 2025, 14, 3187. https://doi.org/10.3390/electronics14163187
Zhang K-D, Chu ET-H, Lee C-R, Su J-H. Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques. Electronics. 2025; 14(16):3187. https://doi.org/10.3390/electronics14163187
Chicago/Turabian StyleZhang, Kai-Di, Edward T.-H. Chu, Chia-Rong Lee, and Jhih-Hua Su. 2025. "Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques" Electronics 14, no. 16: 3187. https://doi.org/10.3390/electronics14163187
APA StyleZhang, K.-D., Chu, E. T.-H., Lee, C.-R., & Su, J.-H. (2025). Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques. Electronics, 14(16), 3187. https://doi.org/10.3390/electronics14163187