Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication
Abstract
1. Introduction
2. DUT and Measurement Setup
- Version (a) Pin/Pout/GT = −25 dBm/−9.9 dBm/15 dB.
- Version (b) Pin/Pout/GT = −25 dBm/−11 dBm/13 dB.
3. Results and Discussion
3.1. DC and RF Characteristics
3.2. Dynamic Behavior of the Diffusion Capacitances
3.3. Understanding Negative Capacitance in the HBT
3.4. Power Characteristics of CE Power Cell, Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schröter, M.; Wedel, G.; Heinemann, B.; Jungemann, C.; Krause, J.; Chevalier, P.; Chantre, A. Physical and Electrical Performance Limits of High-Speed SiGeC HBTs, Part I: Vertical Scaling. IEEE Trans. Electron Devices 2011, 58, 3687–3696. [Google Scholar] [CrossRef]
- Lachner, R. Towards 0.7 terahertz Silicon Germanium heterojunction bipolar technology–The DOTSEVEN project. ECS Trans. 2014, 64, 21–37. [Google Scholar] [CrossRef]
- Fox, A.; Heinemann, B.; Rucker, H.; Barth, R.; Fischer, G.G.; Wipf, C.; Marschmeyer, S.; Aufinger, K.; Bock, J.; Boguth, S.; et al. Advanced Heterojunction Bipolar Transistor for Half-THz SiGe BiCMOS Technology. IEEE Electron Device Lett. 2015, 36, 642–644. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, J.; Yun, J.; Kaynak, M.; Tillack, B.; Rieh, J.-S. 300-GHz Direkt and Heterodyne Active Imagers Based on 0.13-μm SiGe HBT Technology. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 536–545. [Google Scholar] [CrossRef]
- Yishay, R.B.; Carmon, R.; Katz, O.; Elad, D. Correct. In Proceedings of the 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, 23–25 May 2010; pp. 529–532. [Google Scholar]
- Cilici, F.; Margalef-Rovira, M.; Lauga-Larroze, E.; Bourdel, S.; Leger, G.; Vincent, L.; Mir, S.; Barragan, M.J. Nonintrusive Machine Learning-Based Yield Recovery and Performance Recentering for mm-Wave Power Amplifiers: A Two-Stage Class-A Power Amplifier Case Study. IEEE Trans. Microw. Theory Tech. 2023, 72, 3046–3064. [Google Scholar] [CrossRef]
- Thian, M.; Tiebout, M.; Buchanan, N.B.; Fusco, V.F.; Dielacher, F. A 76-84 GHz SiGe Power Amplifier Array Employing Low-Loss Four-way Differential Combining Transformer. IEEE Trans. Microw. Theory Tech. 2013, 61, 931–938. [Google Scholar] [CrossRef]
- Floyd, B.A.; Reynolds, S.; Pfeiffer, U.; Zwick, T.; Beukema, T.; Gaucher, B. SiGe Bipolar Transciever Circuits Operating at 60 GHz. IEEE J. Solid-State Circuits 2005, 40, 156–167. [Google Scholar] [CrossRef]
- Lin, C.-H.; Su, Y.-K.; Juang, Y.-Z.; Chiu, C.-F.; Chang, S.-J.; Chen, J.F.; Tu, C.-H. The Optimized Geometry of the SiGe HBT Power Cell for 802.11 a WLAN Applications. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 49–51. [Google Scholar] [CrossRef]
- Wu, K.; Fahs, B.; Hella, M. A 220 GHz Outphasing Transmitter in 130-nm BiCMOS Technology. In Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 15–17 October 2018; pp. 227–230. [Google Scholar]
- Chang, M.; Rebeiz, G.M. A Wideband High-Efficiency 79-97 GHz SiGe Linear Power Amplifier with >90 mW Output. In Proceedings of the 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Monterey, CA, USA, 13–15 October 2008; pp. 69–72. [Google Scholar]
- Sakalas, M.; Joram, N.; Ellinger, F. Fully Differential High Input Power Handling Ultra-Wideband Low Noise Amplifier for MIMO Radar Application. In Proceedings of the 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Miami, FL, USA, 22–25 October 2017. [Google Scholar]
- Datta, K.; Hashemi, H. Performance Limits, Design and Implementation of Class-E mm-Wave SiGe HBT Class-E and Stacked Power Amplifiers. IEEE J. Solid-State Circuits 2014, 49, 2150–2170. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, N. Base-Region Optimization of SiGe HBTs for High-Frequency Microwave Power Amplification. IEEE Trans. Electron Devices 2006, 53, 875–883. [Google Scholar]
- Gu, Q.J.; Xu, Z.; Chang, M.-C.F. Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2012, 60, 1365–1374. [Google Scholar] [CrossRef]
- Yuan, X.; Lie, D.; Larson, L.; Blonski, J.; Gross, J.; Kumar, M.; Mecke, J.; Senior, A.; Chen, Y.; Poh, A.; et al. RF linearity study of SiGe HBTs for Low Power RFIC Design, Part 1. In Proceedings of the 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002, Proceedings, ICMMT 2002, Beijing, China, 17–19 August 2002; pp. 70–73. [Google Scholar]
- Wambacq, P. Distortion Analysis of Analog Integrated Circuits; Klüver Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Niu, G.; Liang, Q.; Cressler, J.; Webster, C.; Harame, D. RF Linearity Characteristics of SiGe HBT. IEEE Trans. Microw. Theory Tech. 2000, 49, 1558–1565. [Google Scholar]
- Kracht, J.; Loffler, B.; Ribic, N.; Wachmann, E. BVCE0-Increased Operating Voltage for SiGe HBTs. In Proceedings of the 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 26–30 March 2006; pp. 507–511. [Google Scholar]
- Sakalas, P.; Mukherjee, A.; Schroter, M. Distortion Analysis of CE and CB SiGe HBT Power-Cells with fmax beyond 220 GHz for Millimeter-Wave Applications. In Proceedings of the 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 3–6 November 2019; pp. 1–4. [Google Scholar]
- Schroter, M.; Pehlke, D.; Lee, T.-Y. Compact Modeling of High-Frequency Distortion in Silicon Integrated Bipolar Transistors. IEEE Trans. Electron Devices 2000, 47, 1529–1535. [Google Scholar] [CrossRef]
- de Vreede, L.C.N.; de Graaff, H.; Mouthaan, K.; de Kok, M.; Tauritz, J.; Baets, R. Advanced Modeling of Distortion effects in Bipolar Transistors using the Mextram Model. IEEE J. Solid-State Circuits 1996, 31, 114–121. [Google Scholar] [CrossRef]
- Sansen, W. Distortion in Elementary Transistor Circuits. IEEE Trans. Circuits Syst.-II Analog. Digit. Signal Process. 1999, 46, 315–325. [Google Scholar] [CrossRef]
- Samelis, A.; Pavlidis, D. Mechanisms Determining Third Order Intermodulation in AlGaAs/GaAs Heterojunction Bipolar Transistors. IEEE-Trans. Microw. Theory Tech. 1992, 40, 2374–2380. [Google Scholar] [CrossRef]
- Wambacq, P.; Gielen, G.G.; Kinget, P.R.; Sansen, W. High-Frequency Distortion Analysis of Analog Integrated Circuits. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1999, 46, 335–345. [Google Scholar] [CrossRef]
- Heinemann, B.; Barth, R.; Bolze, D.; Drews, J.; Fischer, G.G.; Fox, A.; Fursenko, O.; Grabolla, T.; Haak, U.; Knoll, D.; et al. SiGe HBT Technology with fT/fmax of 300 GHz/500 GHz and 2.0 ps CML Gate Delay. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 688–691. [Google Scholar]
- Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Van Moer, M.; Rolain, Y. A Large-Signal Network Analyzer: Why is it needed? IEEE Microw. Mag. 2006, 7, 46–62. [Google Scholar] [CrossRef]
- Sakalas, P. Focus Application Note. AN-67, Vectorial Harmonic Load Pull for mm-Wave Frequency Power Device Characterization and Compact Model Verification. Available online: https://focus-microwaves.com/wp-content/uploads/2024/06/20221114-Vectorial-Load-Pull-for-mm-Wave-Frequency-Power-Device-Characterization-and-Compact-Model-Verification-MPI.pdf (accessed on 30 June 2025).
- Grens, C.M.; Cheng, P.; Cressler, J.D. Reliability of SiGe HBTs for Power Amplifiers–Part I: Large-signal RF Performance and Operating Limits. IEEE-Trans. Device Mater. Reliab. 2009, 9, 431–439. [Google Scholar] [CrossRef]
- Cheng, P.; Grens, C.M.; Cressler, J.D. Reliability of SiGe HBTs for Power Amplifiers–Part II: Underlying Physics and Damage Modeling. IEEE-Trans. Device Mater. Reliab. 2009, 9, 440–448. [Google Scholar] [CrossRef]
- Dielacher, F.; Tiebout, M.; Lachner, R.; Knapp, H.; Aufinger, K.; Sansen, W. SiGe BiCMOS Technology and Circuits for Active Safety Systems. In Proceedings of the Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 28–30 April 2014; pp. 1–4. [Google Scholar]
- Jonscher, A.K. The Physical Origin of Negative Capacitance. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1986, 82, 75–81. [Google Scholar] [CrossRef]
- Maseko, N.S. Negative Capacitance Analysis of Discrete Semiconductors. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa. Available online: https://ujcontent.uj.ac.za/esploro/outputs/graduate/Negative-capacitance-analysis-of-discrete-semiconductors/9930309107691 (accessed on 22 August 2017).
- Freeman, G.; Rieh, J.-S.; Yang, Z.; Guarin, F. Reliability and performance scaling of very high speed SiGe HBTs. Microelectron. Reliab. 2004, 44, 397–410. [Google Scholar] [CrossRef]
- Niu, G.; Liang, Q.; Cressler, J.; Webster, C.; Harame, D. Systematic Analysis of RF Distortion in SiGe HBT’s. In Proceedings of the 2001 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (IEEE Cat. No.01CH37173), Phoenix, AZ, USA, 20–22 May 2001; pp. 147–150. [Google Scholar]
- Sakalas, P.; Ramonas, M.; Schroter, M.; Jungemann, C.; Shimukovitch, A.; Kraus, W. Impact Ionization Noise in SiGe HBTs: Comparison of Device and Compact Modeling with Experimental Results. IEEE-Trans. Electron Devices 2009, 56, 328–336. [Google Scholar] [CrossRef]
- Grens, C.M.; Seth, S.; Cressler, J.D. Common-Base intermodulation Characteristics of advanced SiGe HBTs. In Proceedings of the 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Monterey, CA, USA, 13–15 October 2008; pp. 244–247. [Google Scholar]
- Zhu, C.; Liang, Q.; Al-Huq, R.; Cressler, J.; Lu, Y.; Chen, T.; Joseph, A.; Niu, G. Damage Mechanisms in Impact-Ionization-Induced mixed-Mode Reliability Degradation of SiGe HBTs. IEEE Trans. Device Mater. Reliab. 2005, 5, 142–149. [Google Scholar]
- Lee, C.-P.; Ma, W.; Wang, N.L. Averaging and Cancellation Effect of High-Order Nonlinearity of a Power Amplifier. IEEE Trans. Circuits Syst.-I Regul. Pap. 2007, 54, 2733–2740. [Google Scholar]
- Lee, C.I.; Lin, Y.T.; Lin, W.C. Investigation of linearity in the high electric field region for SiGe HBTs based on Volterra series. IEEE Trans. Device Mater. Reliab. 2014, 14, 1049–1055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakalas, P.; Mukherjee, A. Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication. Electronics 2025, 14, 2984. https://doi.org/10.3390/electronics14152984
Sakalas P, Mukherjee A. Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication. Electronics. 2025; 14(15):2984. https://doi.org/10.3390/electronics14152984
Chicago/Turabian StyleSakalas, Paulius, and Anindya Mukherjee. 2025. "Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication" Electronics 14, no. 15: 2984. https://doi.org/10.3390/electronics14152984
APA StyleSakalas, P., & Mukherjee, A. (2025). Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication. Electronics, 14(15), 2984. https://doi.org/10.3390/electronics14152984